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Abstract

Aircraft noise has been an increasing urgent environment issue especially for people

living near airports. In recent years, airframe noise has been comparable to

engine noise particularly for landing aircraft. This thesis addresses a previously

neglected source, surface roughness generated boundary-layer noise, with the aim

of developing a prediction model to assess the potential contribution of surface

roughness to airframe noise.

The thesis is focused on the sound scattering mechanism. The generation

of sound by turbulent boundary-layer flow over a rough wall is investigated by

applying a theoretical model which describes the scattering of turbulence near field

into sound by roughness elements. Models for the source statistics are obtained

by scaling smooth-wall data by the increased friction velocity and boundary-layer

thickness for a rough surface. Attention is focused on a numerical method to

predict the absolute level of far-field radiated roughness noise. Direct numerical

integration is used to obtain the prediction model which is able to reproduce the

spectral characteristics of the available empirical formula and experimental data.

Acoustic experiments are conducted for two rough plates in an open jet. The

reasonable agreement between measured and predicted noise spectra is observed,

and beamforming source maps by phased microphone arrays exhibit satisfactory

similarities between measurement and simulation in source pattern and source

strength. The dipole directivity features are demonstrated. However, the prediction

model underestimates the streamwise gradient of source strength and overestimates

the sound radiation in the high-frequency region. Hot-wire measurement is

performed and it determines the applicable wake strength and skin friction

coefficient that account for the roughness effects of turbulence enhancement.
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ii ABSTRACT

Numerical estimates for a current aircraft wing and a conceptual “silent

aircraft” design with idealized roughness levels show that in the high-frequency

region the sound radiated from surface roughness may exceed that from trailing

edge. A parametric study indicates that roughness height and roughness density

significantly affect the noise radiation with roughness height having the dominant

effect. The noise directivity pattern varies with different levels of surface roughness.

The maximum allowable roughness levels on the surface of the silent aircraft are

studied to achieve an aggressive noise target.

An alternative method to the scattering of near-field turbulence is that large

roughness elements shed vorticity resulting in unsteady drag. This drag dipole

mechanism is extended to consider very large roughness elements by modifying

a previous model for spheres to determine the unsteady drag on the hemispherical

elements and then the radiated sound. The preliminary prediction shows that this

noise source can be comparable to the scattering roughness noise.

Finally, a beamforming correction for dipole measurement using phased

microphone arrays is presented. A new beamforming algorithm for identifying

dipoles is developed and validated by numerical and experimental implementation.

In conclusion, the validated theoretical model shows that it is capable of

approximately predicting the far-field radiated roughness noise. The assessment

of the contribution of surface roughness to airframe noise suggests that surface

roughness noise was underestimated and needs to be carefully considered in the

design of a low-noise airframe.

KEYWORDS: Silent Aircraft Initiative, surface roughness noise, airframe noise, sound

scattering, rough-wall turbulent boundary layer, wavenumber-frequency spectrum, hairpin

vortex, aeroacoustic dipole, phased microphone array, beamforming algorithm.
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The Nomenclature lists symbols used in the main body of the thesis: Chapters 3–7.

Definitions of symbols are also incorporated in the Literature Review of Chapter 2

and the Appendices.
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0
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J function of κ, Equation (5.6)
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St Strouhal number based on R and U , fR/U , Section 6.4.2.2

t observer time

t vortex shedding time, Chapter 6
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v perturbation velocity
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1−M2, Chapter 7
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Γ vortex circulation
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δ0 δ at the front edge of the rough region
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τ source time
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τ0 roughness parameter, Equation (3.43)
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ϕ azimuthal angle of vortex ring, Section 6.2.1

Φ point pressure frequency spectrum

ΦB Blake’s frequency spectrum of wall pressures, Equation (3.52)
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ω fluid vorticity curl v, Section 6.2.1.1

ωτ friction frequency, Equation (6.50)
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1, 2 with regard to dipoles DPL1,DPL2, Section 4.3.4.5

i with regard to the i-direction, Chapter 6

i, j general summation variable

m roughness element index

m,n microphone indices, Equation( 7.25)

m, s with regard to measurement or simulation, Section 7.5.3

n vortex ring index, Chapter 6

x, y, z with regard to the x-, y- or z-direction, Chapter 6
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max maximum value
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tot total

Superscripts
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∗ complex conjugate or Hermitian transpose when applied to a vector

¯ mean value or average

ˆ Fourier transform

˜ normalized value

Other Symbols
∇ Del operator

∇2 Laplacian operator
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Ex[ . ] Expected value

· scalar product

∧ vector product

〈 . 〉 ensemble average∮
S
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V

integration over bounded volume V
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Chapter 1

Introduction

1.1 Background

1.1.1 Aircraft noise sources

NOISE has been one of the most important pollution sources in modern

industrial society, and is often cited as the most undesirable feature of life in

the urban community. One significant contribution to the noise pollution is from

aircraft noise, which is second only to traffic noise in the city in its unsociable

levels, frequency, and time of occurrence, and is often at the top of the list in

rural areas [138]. Along with the increasing growth of civil transport aircraft

from the 1960s, aircraft noise has drawn worldwide concerns and become one of

the important criteria for aircraft navigability. Federal Aviation Administration

(FAA) and International Civil Aviation Organization (ICAO) issued the Code of

Federal Regulations, Part 36 (CFR Part 36)† [48] and Annex 16 to the Convention

on International Civil Aviation [85], respectively, with strict certification setting

maximum permissible noise for each type of aircraft. It is pointed out definitely

that no aircraft is allowed to operate until it satisfies the certification requirements.

The noise from an aircraft may be broadly classified into two categories: (i)

Propulsive Noise: noise from aircraft engines; and (ii) Airframe Noise: noise from

high-lift devices, trailing edges, landing gear, cavities, etc., defined as the noise

generated by flow over the airframe and/or the non-propulsive noise of an aircraft

†Originally called Federal Air Regulations, Part 36 (FAR Part 36).

1
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Figure 1.1: Aircraft noise sources [149].

Figure 1.2: Typical modern aircraft noise levels [161].

in flight. Figure 1.1 displays the typical aircraft noise sources. Engine noise has been

significantly reduced with the introduction of high-bypass-ratio engines; currently,

airframe noise is comparable to engine noise for landing/approaching aircraft.

Typical levels showing the relative importance of various noise sources are shown in

Figure 1.2. Therefore any further noise reduction can only be achieved by reducing

both the airframe noise and propulsive noise.
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Figure 1.3: Airframe noise sources [54].

Airframe noise derives from various sources, as shown in Figure 1.3, among

which flaps, leading-edge devices and landing gear are three main components. The

relative contributions of individual airframe noise sources seem to be highly design

dependent, varying greatly with aircraft design, geometry, and configuration. In

a “clean” configuration (landing gear and high-lift devices stowed), airframe noise

is primarily due to trailing-edge (TE) noise and protrusions around the airframe;

whereas in a “dirty” configuration (landing gear and high-lift devices deployed),

the major contributors of airframe noise are extended high-lift devices on the wing

and deployed landing gear.

1.1.2 The Silent Aircraft Initiative

The work described in this thesis is part of a wider project, “Silent Aircraft Initiative”

(SAI) [40, 41, 101, 145], funded by the Cambridge-MIT Institute (CMI). The project

is carried out in a partnership between the University of Cambridge and MIT as

part of an extensive network of aerospace partners which includes industry, airline

and airport operators, policy makers and academics, such as Boeing, Rolls-Royce,

British Airways and NASA.

The project aims to develop a conceptual aircraft design whose noise impact

would be below the daytime ambient levels around a typical urban airport. The

outcome of this research effort has been a Silent Aircraft eXperimental design

SAX-40, as shown in Figure 1.4, designed to carry 215 passengers with a range

of 5000 nm in a blended-wing-body (BWB) type airframe [72] and a predicted
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Figure 1.4: The Silent Aircraft eXperimental design SAX-40 and the Cambridge-MIT Silent
Aircraft team.

maximum noise level below 63 dBA outside the airport perimeter. Many technical

challenges still need to be overcome before the conceptual design could become a

reality in the 2030 time frame, but the project has clearly identified these challenges

and thus provided a direction for the work needed to address them.

The research team consists of the engine noise, airframe noise, operations and

economics groups with about 35 researchers, and the work of this thesis is affiliated

within the airframe noise group. Figure 1.4 shows the Cambridge-MIT Silent

Aircraft team and the specific work undertaken by the team members. Details of

the SAI research can be found in a collection of papers presented in the “Special

Session – Towards A Silent Aircraft” [7, 32, 37, 40, 72, 73, 123, 126, 142, 147] at the

45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA, January 2007.

1.2 Motivations and Objectives

Following the TE noise theory of Lilley [97], in a recent research Faszer and

Hileman [50, 51] compared previous airfoil self noise models [21, 27, 97, 99] and

they found that there is a significant gap of approximately 15–20 dB in noise levels
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Figure 1.5: Airfoil self noise normalized by wing area and height as a function of velocity
(measured data from Fink [54]). Straight lines correspond to the 5th power
variation predicted by Lilley’s TE noise theory [97]. Comparison of self noise
models (Faszer and Hileman [50, 51]): � red, Lilley semi-empirical airframe
model [97]; � purple, ESDU empirical airframe model [27] – conventional wing;
� orange, modified volume Lilley semi-empirical airframe model [99]; � blue,
ESDU empirical airframe model [27] – glider wing; � green, Brooks et al. self
noise model [21].

between the TE noise and the airfoil self noise generated by a “clean” configuration

of jet aircraft. As shown in Figure 1.5, the Brooks et al. self noise model [21] (green

circle) considers TE noise only, whereas the models marked by the red and purple

circles [27, 97] are empirical fits for “clean” configurations and agree well with

measurement (Fink [54]). The orange and blue circles [27, 99] almost coincide with

the red dashed line which is for the measured data of high performance sailplanes

without power equipments.

Figure 1.5 demonstrates a discrepancy between prediction and measurement

of self noise from a “clean” configuration. According to previous studies [54],
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TE noise was supposed to be the only significant noise source under the “clean”

condition, and hence it should be slightly lower than the overall self noise of a

“clean” configuration. Consequently, this means increasing interest in other features

that may contribute to the 15–20 dB discrepancy.

Panel vibration may give noticeable noise levels [57] in addition to other noise

sources that could arise from wing tips and horizontal and vertical tails. In this

work, however, we look at another source mechanism, surface roughness noise,

whereby energy in the turbulent boundary layer may scatter into radiated sound

due to the presence of small surface irregularities. Surface roughness noise has

been previously discounted [33], but it may become a potential contributor as major

advances have been made in reducing the main sources of airframe noise.

According to Lighthill’s theory of aerodynamic sound [95], turbulent boundary-

layer sound from a perfectly smooth flat surface is acoustically equivalent to

a distribution of quadrupole sources, and is therefore not important at aircraft

approach Mach numbers. However, it has been known that the sound level will

be enhanced by turbulent boundary-layer flow over nominally plane surfaces (or

over surfaces of large radius of curvature) [77, 78], e.g. ship hulls, aircraft wings

and fuselages, as illustrated in Figure 1.6. Such surfaces are inevitably not perfectly

Figure 1.6: The rough surface of a transport aircraft.
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smooth due to the presence of small surface irregularities, which might arise from

discontinuities (rivets, ribs, joints, etc.), environmental contamination, paint finishes

or imprecise machining during manufacture.

Relatively small amount of surface roughness can produce substantial increases

in drag compared to that predicted for the corresponding perfectly smooth

boundary [100, 130]. Howe [77] has speculated that surface roughness would

also lead to large increases in the strength of the boundary-layer generated

noise. Moreover, it is likely that a substantial fraction of the airframe noise of a

wide-bodied jet transport airplane flying in the “clean” configuration is associated

with the surface roughness generated noise [77].

The overall aim of this research, therefore, is to assess the contribution of surface

roughness to airframe noise. We seek to determine whether surface roughness is a

significant noise source comparable to TE noise in the far field, and if it is how to

quantify the roughness noise for a specific aircraft.

The major objectives of this thesis are:

• To understand the sound generation mechanisms of surface roughness noise

through a theoretical approach;

• To develop a theoretical prediction model to approximately quantify the

surface roughness noise radiated to the far field;

• To design and conduct experiments to validate the prediction model including

some roughness effects on turbulent boundary-layer parameters;

• To apply the validated prediction model to the assessment of surface

roughness noise from current aircraft and the SAI design SAX-40;

• To extend the theoretical model to very large roughness elements and obtain

preliminary noise predictions;

• To develop a new beamforming algorithm for phased microphone array

measurements of dipole sources.
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1.3 Thesis Outline

The principle underpinning this research is the development of the prediction

model for surface roughness noise, including theoretical formulation, numerical

calculation, experimental validation and applications to a Boeing-757 sized aircraft

wing and the SAX-40 airframe. A range of technical topics is covered in this work,

such as sound diffraction, formulations for turbulent boundary-layer pressure

fluctuations, flow effects over rough surfaces, wind tunnel experimentation,

acoustic measurements in an open jet, and acoustic beamforming algorithm.

The structure of this thesis is as follows:

In Chapter 2, we introduce the classical theories of wave scattering from rough

surfaces, and survey the literature relevant to rough-wall turbulent boundary-layer

flow and sound generation by surface roughness, including flow effects of turbulent

boundary layers over rough walls, turbulent boundary-layer wall pressures, and

previous experimental and theoretical work on surface roughness noise.

Chapter 3 is a description of the theoretical modelling of the surface roughness

noise of sound scattering. We first formulate the diffraction theory of turbulent

boundary-layer roughness noise on the basis of a previous analytical model [77].

The frequency spectrum of far-field radiated roughness noise is derived as an

infinite double integral in which the effects of roughness-enhanced turbulent

fluctuations are considered. A numerical method is then applied to evaluate the

integral and the predicted roughness noise spectrum is compared with those from a

previous empirical model [82] and experimental data [71].

In Chapter 4, we present experimental results to validate this prediction model.

Acoustic measurements are conducted to compare the measured and predicted

roughness noise spectra. Phased microphone arrays are applied to identify the

locations and strengths of roughness noise sources. In parallel with the array

measurements, theoretical predictions of the noise are processed through the

same beamforming algorithm to enable an indirect comparison of array results

between measurement and prediction. Hot-wire measurement is also performed to
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determine the value of wake strength for the rough-wall boundary-layer thickness

formula proposed in Chapter 3, and to validate the skin friction formula [106] for a

rough plate.

Following the experimental validation, in Chapter 5 we apply the prediction

model to estimate the far-field radiated roughness noise from a Boeing-757 sized

aircraft wing with different idealized levels of surface roughness. The relative levels

of the roughness noise and TE noise are discussed and explained. A parametric

study and a directivity study are also carried out to investigate more features of

the roughness noise. We then perform similar roughness noise assessment for the

SAX-40 airframe and investigate the maximum allowable roughness levels on the

aircraft surface, if the aircraft is to achieve the aggressive noise target.

We then extend the prediction of surface roughness noise in Chapter 6 to

model the noise generated by very large roughness elements that protrude out of

the boundary layer and enhance the drag fluctuations due to additional vortex

shedding from each element. From a brief literature survey on relevant work,

a previous analytical model [83] is modified to determine the unsteady drag on

the hemispherical element and hence the noise radiation. Based on the modified

hemisphere model, the drag-dipole roughness noise is preliminarily predicted and

compared with the scattering roughness noise which has been studied in detail in

Chapters 3–5.

In Chapter 7, a beamforming correction for identifying dipole sources by

means of phased microphone array measurements is proposed and implemented

numerically and experimentally. Both the correction techniques to microphone

signals and the beamforming algorithm are derived and compared. A new

dipole-beamforming algorithm is developed by modifying the basic source

definition used for beamforming. Numerical simulations are performed for

validating its capability to recover ideal dipole sources. The beamforming correction

is then applied to the experiments of realistic aeolian-tone dipoles.

Finally, a summary of the thesis and its conclusions are given in Chapter 8, and

future work of improvements and interesting areas is suggested.
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Chapter 2

Literature Review

THIS chapter presents a review on three relevant topics: (i) wave scattering from

rough surfaces, (ii) rough-wall turbulent boundary-layer flow, and (iii) sound

generation by surface roughness published in the open literature. Emphasis is laid

on the last topic, surface roughness generated boundary-layer noise, which is the

primary purpose of this thesis. The source mechanisms of surface roughness noise,

i.e. the sound scattering mechanism (incoherent and coherent) and the drag dipole

mechanism, will be surveyed and discussed systematically. It is pointed out that the

incoherent scattering mechanism will be selected for the theoretical modelling of

turbulent boundary-layer roughness noise in Chapter 3 and verified experimentally

in Chapter 4, and that the drag dipole mechanism will be extended to account for

very large roughness elements in Chapter 6.

2.1 Wave Scattering from Rough Surfaces

2.1.1 Overview

Real surfaces are never perfectly smooth. The extent to which surface roughness

affects wave scattering behaviour is therefore of great interest. This problem has

been the subject of study over the last few decades in many diverse branches

of physics and engineering, including medical ultrasonics, radar imaging, sonar

detection, solid-state physics, optics, astronomy and ultrasonic non-destructive

testing [117]. So far the majority of wave scattering problems have concentrated on

11



12 CHAPTER 2: LITERATURE REVIEW

two types of waves [116]: (i) electromagnetic wave scattering from rough surfaces

for the design of radar systems; and (ii) acoustic wave scattering from rough

surfaces for ultrasonic inspection of materials and sonar studies.

There are numerous research papers on wave scattering from rough surfaces,

both theoretical and experimental. The most often quoted book on this subject

is by Beckmann and Spizzichino [13]. This book concentrates on the Kirchhoff

approximation as a method of solution to scalar wave scattering from periodic

and random surfaces; and most of the results may equally well be applied to

electromagnetic waves or acoustic waves. The second edition of this book discusses

experimental observations of the effects of surface roughness, including reflections

from the surfaces of the Earth, Moon, Sun and atmosphere layers.

A more recent book of Bass and Fuks [12] considers both perturbation and

Kirchhoff theories and deals with more complicated effects such as surface

self-shadowing and multiple scales of roughness. Multiple scattering is also

considered, through integral equation techniques. A survey of literature specific to

acoustic wave scattering from the sea surface was carried out by Fortuin [56], who

discusses both random and periodic surfaces. Perturbation and Kirchhoff theories

are discussed and model predictions compared with experimental observations of

sea surface scattering.

The most recent review on this subject is probably that of Ogilvy [116, 117].

Although published over 15 years ago it is the first comprehensive summary, in

one volume, of all the intensive studies up to 1991. The early theories developed for

the study of acoustic, elastic and electromagnetic wave scattering from randomly

rough surfaces are discussed, and emphasis is placed on those which lead to soluble

equations and which are of practical interest, including the perturbation theory and

Kirchhoff theory.

Despite the large volume of literature there has been no systematic development

of the theory. Most of the theoretical work can be divided into two categories:

• Approximate but tractable, and hence of restricted applicability, e.g. the

perturbation theory and Kirchhoff theory;
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• More rigorous but formal, due to the complicated nature of the resulting

expressions, such as integral equation techniques and variational methods.

The approaches easiest to understand physically are probably the perturbation and

Kirchhoff approximations. For this reason these two theories are introduced briefly

in turn and their strengths and weaknesses are identified and compared.

2.1.2 Perturbation theory

In perturbation theory [59] the rough surface is regarded as a perturbation to a

smooth plane, and the consequent change in the scattering coefficient, due to the

presence of roughness, is calculated. The scattering of waves from surfaces that are

only slightly rough may be studied using perturbation theory, which necessitates

restrictions on the height h(x, y) and gradient ∇h(x, y) of the surface:

k|h(x, y)| � 1 and |∇h(x, y)| � 1, (2.1)

where k is the modulus of the wavevector of the incident wave. This inequality

requires that the height deviation of the surface is everywhere very small compared

to the wavelength of the incident wave.

It is assumed that if Equation (2.1) is satisfied, and the surface profile is slowly

varying with no discontinuities, then the total field in the presence of a scatterer may

be expanded in an infinite series:

ψ(r) = ψinc(r) +
∞∑

n=0

ψsc(r), (2.2)

where ψinc(r) is the incident wave field and ψsc(r) is the nth-order approximation to

the scattered field. The term n = 0 is given by the scattered field which would exist

if the surface were smooth (the unperturbed solution). It is also assumed that if the

boundary conditions obeyed on the rough surface are of the form

f(x, y, z)
∣∣
z=h(x,y)

= 0, (2.3)

then they may be expanded in a Taylor series about the mean plane z = 0, of the

form

f(x, y, z)
∣∣
z=h(x,y)

= f(x, y, z)
∣∣
z=0

+ h
∂f

∂z

∣∣∣∣∣
z=0

+
h2

2

∂2f

∂z2

∣∣∣∣∣
z=0

+ · · · , (2.4)



14 CHAPTER 2: LITERATURE REVIEW

where f(x, y, z) is, for example, the pressure (acoustics) or stress components

(elasticity) on the rough surface.

The accuracy of perturbation theory depends on the validity of the restrictions

given by Equation (2.1) and the order of terms retained in the expansion of Equation

(2.4). The theory can take some account of multiple scattering effects if terms

of order h2 are retained. However, other effects (e.g. shadowing and multiple

scattering events of a higher order than the theory) will combine to reduce the

accuracy of the perturbation approach. Theses effects will become more marked as

the angles of incidence and scattering increase away from the mean surface normal.

No applications of this theory go beyond the use of the second-order perturbation

theory which is usually an adequate level of approximation. The range of surfaces

for which this approximation is adequate is limited, due to the restrictions on height

and gradient.

2.1.3 Kirchhoff theory

Kirchhoff theory, also known as tangent plane theory, is the most widely used theory

in the study of wave scattering from rough surfaces. This is perhaps due primarily

to two reasons: the theory has an easily understandable physical basis and leads to

relatively simple analytical expressions for scattered field amplitudes.

A simple geometrical construction has been used to determine an inequality

which must be satisfied by the surface (see, for example, Bass and Fuks [12]):

ka cos3 θ1 � 1, where a is the radius of curvature of the surface and θ1 is the

incidence angle. This essentially states that the deviation of the surface from flat

must be small compared with the wavelength of the incident wave. A restriction

is therefore placed on the radius of curvature of the surface that must have a

height profile with no rapid changes in the gradient. No explicit restrictions on

the magnitude of the height or gradient are required.

When the surface of the scatterer, S0, is closed (i.e. the surface encloses a finite

volume) then the scattered field at any observation point r can be written in terms
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of the field quantities on the surface using the Helmholtz scattering formula [117]

ψsc(r) = ψ(r)− ψinc(r)

=

∫
S0

[
ψ(r0)

∂G(r, r0)

∂n0

−G(r, r0)
∂ψ(r0)

∂n0

]
dS0,

(2.5)

where the integral is over S0, and n0 is the unit outer normal to S0.

All quantities in Equation (2.5) are known except for the total pressure (or

potential) ψ(r0) and its gradient ∂ψ(r0)/∂n0 on the scattering surface. One of

these is known from the boundary condition satisfied at the surface, and the other

is specified with the aid of the Kirchhoff approximation. If the pressure is to be

specified, the total pressure on the surface is then given by

ψ(r0) =
[
1 +R(r0)

]
ψinc(r0). (2.6)

If the gradient of the pressure is to be specified, we have that

∂ψ(r0)

∂n0

=
[
1−R(r0)

]∂ψinc(r0)

∂n0

, (2.7)

where the reflection coefficient R(r0) is assumed to depend on position along the

surface. By substitution of Equation (2.6) or (2.7) into Equation (2.5), together with

the boundary conditions, an expression is obtained for the scattered field at some

point r in terms of known quantities. This is the general solution to the scattering

problem in the Kirchhoff approximation.

Kirchhoff theory provides an approximation to the scattered field on the surface

of a scatterer. The physical basis for this approximation is obvious: any point on

the rough surface is assumed to behave as if the surface were locally flat, so that

the reflection coefficient is equal to that of an infinite plane passing through that

point and parallel to the local surface tangent. Kirchhoff theory is therefore exact

for surfaces that are infinite, smooth and planar. For all other scatterers the theory

is approximate and suffers from two shortcomings: it is not self-consistent and does

not conserve energy [117]. The former means that if Kirchhoff theory is used to

calculate the field away from a scatterer and this field is then specialized to points

on the scatterer then the surface fields do not satisfy the theory. Lack of energy

conservation suggests that propagating modes such as surface waves are ignored
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by Kirchhoff theory. The accuracy of Kirchhoff theory will be affected both by the

roughness of the surface and by the shape and dimensions of the mean surface.

Unlike the perturbation approach it is difficult to quantify the inherent accuracy of

Kirchhoff approximation.

2.1.4 Comparison and further considerations

The results from perturbation theory and Kirchhoff theory can be compared for

those surfaces for which the limitations of both methods hold. It is generally stated

in the literature that results from these two methods do not agree due to the very

different physical principles on which they are based. However, the two theories can

lead to the same predictions for coherent and diffuse field intensities. This would

be for surfaces of small height and with a correlation length satisfying λ0 > λ.

A good discussion on the comparison of the two theories is given by

Chapman [24]. This piece of work has demonstrated neatly that the perturbation

and Kirchhoff approaches generally do not lead to the same result for the reflected

coherent signal except in the limit of surfaces with infinite correlation length

(i.e. regular patterns or smooth surfaces). Furthermore, agreement between the

two methods improves as the incident wave approaches the normal to the mean

plane. In addition, the general forms of the diffusely scattered field agree for both

first-order perturbation theory and Kirchhoff theory in the small roughness limit.

Despite being one of the early developed methods, Kirchhoff theory is

undoubtedly still the most often quoted and applied theory in the literature of recent

times, in both theoretical and experimental studies. The reason for this must lie

in the obvious physical basis for the approximation and the ease with which the

results may be calculated. Application of perturbation theory has been much more

limited, probably due to the stricter conditions on the surface to which this theory

is applicable. In addition the effects of roughness for these surfaces must be small

due to the restrictions on height and gradient.

Since the early introduction of the above theories various refinements have been

introduced, including self-shadowing (see, for example, Wangner [153]). Here an
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estimate is obtained for the fraction of surface not insonified by the wave, due to

other parts of the surface acting as a screen. The problem of multiple scale roughness

is considered in a small portion of literature. In general it is assumed that the large

scale may be treated using Kirchhoff theory and that perturbation theory may be

used for the small scale roughness [12].

In addition, the effects of multiple scattering become important in the case that

the surface roughness increases and the incidence angle increases away from the

surface normal [75]. The boss (protuberance) model is probably the most promising

multiple scattering theory in which the surface is modelled as a random array of

bosses of known shape and known scattering behaviour. The advantage of this

model, which does not appear to describe true rough surfaces realistically, lies in its

ability to include the effects of multiple interactions between the bosses.

Other approaches describe a rough surface as an array of planar facets or

randomly distributed point scatters with reflection properties known. Integral

equations is then formulated, from the Helmholtz scattering formula, for the

scattered field on the rough surface, which makes an improvement on Kirchhoff

approximation [98]. Variational techniques have been used to obtain optimal

estimates to the scattering coefficients [67].

However, the theories on wave scattering from rough surfaces are still far from

complete. No model provides a full description of the processes involved, and

each model is valid for certain regimes of surface roughness only. These models

are, in general, a compromise between the need for accurate predictions and the

requirement for reasonable mathematical simplicity.

More recently the use of numerical simulation methods has become feasible with

the advantage of evaluating expressions which are analytically intractable, often

those involving statistical averages. These methods may be applied both to examine

the accuracy of approximate techniques and to simulate more realistic scattering

experiments. While numerical simulation methods are necessarily computationally

intensive they are probably the most hopeful way forward for further advances in

solving rough surface scattering problems [117].
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2.2 Rough-Wall Turbulent Boundary-Layer Flow

2.2.1 Flow effects over rough walls

The problem of turbulent boundary-layer flow over rough walls has been studied

since the early works of Hagen [66] and Darcy [36], who were concerned with

pressure losses in water conduits. Most fluid dynamics and turbulence books

include material on surface roughness, and the ones by Schlichting [130] and

Duncan et al. [42] are still useful references. The most recent survey is that of

Jiménez [86] in 2004 who reviewed the experimental evidence on turbulent flow

over rough walls.

The most important effect of surface roughness is the change of the mean

velocity profile near the wall, with the consequent modification of the skin friction

coefficient. The best known early experiments on this aspect are the ones by

Nikuradse [115], who studied pipes roughened with carefully graded, closely

packed sand grains. He found that the logarithmic velocity distribution for the mean

velocity profile of smooth walls could still be used in the rough-wall boundary layer,

with the same value of the Kármán constant, κ0 = 0.4, and he expressed the velocity

profile of rough walls as

u

uτ

=
1

κ0

ln

(
y

ks

)
+ h

(
ksuτ

ν

)
, (2.8)

where uτ is the friction velocity, and h is some function of the roughness Reynolds

Figure 2.1: h as a function of roughness Reynolds number, Reτ = ksuτ/ν (Duncan et al. [42]).
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number, Reτ = ksuτ/ν. Equation (2.8) has become the definition of the “equivalent”

or “effective” sand roughness height ks. The function h as determined by these

experiments is shown in Figure 2.1.

It is found that for values of ksuτ/ν less than about 5,

h(ksuτ/ν) = 2.5 ln(ksuτ/ν) + 5.5, (2.9a)
u

uτ

= 2.5 ln
(uτy

ν

)
+ 5.5, (2.9b)

as for a completely smooth pipe. This is because the surface roughness is entirely

immersed in the viscous sublayer that it does not affect the flow in the pipe

or the surface friction. The surface is then referred to as hydraulically smooth or

aerodynamically smooth.

On the other hand, for values of ksuτ/ν greater than about 70,

h(ksuτ/ν) = const. = 8.5, (2.10a)
u

uτ

= 2.5 ln

(
y

ks

)
+ 8.5. (2.10b)

In this case the flow and surface friction are independent of the roughness Reynolds

number. The flow is then referred to as fully developed roughness flow.

The intermediate region (i.e. 5 < ksuτ/ν < 70) is referred to as transitional

roughness in which both viscous friction and roughness form drag contribute

significantly to the surface drag.

The effects of rough walls on turbulent boundary layers are controlled by two

dimensionless parameters [86]. The roughness Reynolds number Reτ quantifies

the effect of the roughness on the buffer layer. The behaviour of transitionally

rough surfaces with low Reτ . 50 depends a lot on their geometries, ranging

from the gradual transitions of irregular surfaces, to the sharper ones in more

uniform geometries. A second parameter is the blockage ratio of the boundary-layer

thickness to the roughness height, δ/ks, which determines whether a logarithmic

layer survives. In flows with δ/ks . 50, the effect of surface roughness extends

across the boundary layer, and is also variable.
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2.2.2 Turbulent wall pressures

2.2.2.1 Wavenumber-frequency spectrum

A turbulent boundary layer induces a fluctuating pressure on the underlying wall.

When the wall is locally plane and the fluctuations are regarded as statistically

stationary in time, these characteristics are usually expressed in terms of the wall

pressure wavenumber-frequency spectrum P (κ, ω), which is the Fourier transform

of the space-time correlation function of the wall pressure. Theoretical models of

P (κ, ω) generally assume the flow to be homentropic of low Mach number over a

flat, rigid wall with no mean pressure gradient.

Howe [81, 82] has discussed the wall pressure wavenumber-frequency spectrum

and the significance of various “wavenumber domains”. Following his work, the

characteristic shape of the wavenumber-frequency spectrum at low Mach numbers

is illustrated in Figure 2.2 for a fixed frequency satisfying ωδ/U � 1. The strongest

components occur in the neighbourhood of the “convective ridge” centred on

κ1 = ω/Uc, κ3 = 0, where Uc is the convection velocity. For a homogeneous flexible

Figure 2.2: Turbulent boundary layer and wall pressure wavenumber-frequency spectrum
at low Mach numbers when ωδ/U � 1 (Howe [82]).
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surface, however, the strongest coupling between the wall and flow is usually

attributed to longer wavelength, “subconvective” components of the wall pressure.

These occupy the low-wavenumber region

|k0| < κ1 � |ω|/Uc, (2.11)

where the spectral levels are typically 30–60 dB below the convective ridge at low

March numbers [82]. Beyond the convective ridge, say for κ1 > uτ/30ν, the scale of

the motion is small enough to be controlled by viscosity, which governs the ultimate

decay of the spectrum [111]. The region κ1 < |k0| is called the “acoustic domain”,

and the corresponding pressure fluctuations are actually sound waves which will

be discussed in Section 2.3.1.

2.2.2.2 Empirical models

Present theoretical work on turbulent boundary-layer flows is still not adequate to

calculate the wall pressure fluctuations directly. Immense numerical simulations

have been carried out (Kim et al. [91], Choi and Moin [28], Spalart [141],

Coleman [30], etc.) and they can provide accurate quantitative information for

low-Reynolds-number flow in simple geometries. A review on the development

of turbulence simulations until 1984 can be found in Rogallo and Moin [127], and

the review by Moin and Mahesh [109] concentrated on changes in Direct Numerical

Simulation (DNS) since that time. However, much work still remains before

sufficiently reliable statistics for high-Reynolds-number flow and complicated

geometries become realistic in the long term.

Therefore, the main information on wall pressure fluctuations of turbulent

boundary layers is obtained through experimental measurements (Willmarth [157,

158], Willmarth and Wooldridge [160], Blake [17], Bhat [15], Bull and Thomas [22],

Efimtsov [43], Schewe [129], etc.) which have been reviewed recently by Ahn [4].

There have been many attempts made to provide empirical models for the

wavenumber-frequency spectrum of the pressure fluctuations which yield the best

agreement with experiments. Several representative empirical models Φ̃p(κ, ω)

for the smooth-wall wavenumber-frequency spectrum P (κ, ω) were developed by
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Corcos [31], Efimtsov [43], Smol’yakov and Tkachenko [140], Ffowcs Williams [52]

and Chase [25, 26]. These empirical models contain adjustable coefficients whose

values are fixed by comparison with experimental data in both the convective

and low-wavenumber domains. A brief description of these empirical models is

provided in Appendix A, and detailed discussions can be found in Graham [63] and

Ahn [4].

Sufficient data are available, derived principally from wind-tunnel experiments

at low Mach numbers, to permit the formulation of empirical representations of

the convective region. Nevertheless, so far there is no satisfactory theoretical

understanding of the characteristics of the spectrum in the subconvective and

acoustic domains [79] for which reported properties often vary significantly

between different experiments. Therefore, there are discrepancies between the

various models of Φ̃p(κ, ω), especially in low wavenumber regions. Through

comparison of the wavenumber-frequency spectra, these discrepancies have been

examined by Graham [63] and then further analysed by Ahn [4].

To sum up, in spite of several decades of intensive experimental study,

the reliability of the various models for the pressure fluctuations of turbulent

boundary layers remains controversial, and no single accepted model covering

all wavenumbers yet exists. As pointed out by Howe [81], the empirical

representations of P (κ, ω) in the convective region can probably be used with

confidence, but unqualified application of formulae in the low-wavenumber and

acoustic domains cannot be recommended.

2.2.2.3 Effects of surface roughness

The above empirical models are for the turbulent boundary-layer flow over smooth

walls. However, as pointed out by Blake [18], at low Mach numbers the validity of

P (κ, ω) may be extended to rough wall boundary layers (provided the characteristic

roughness height ks � δ) by using suitably augmented values of the various

coefficients (e.g. the friction velocity uτ ) in these models to compensate for the

increased levels of Reynolds stress fluctuations. Howe [81] has discussed the
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surface roughness effects on wall pressure wavenumber-frequency spectrum, and

he commented that the above procedure gives satisfactory predictions in the

convective region, but takes no account of modifications produced by scattering

of convective pressures by the roughness elements, which can have a significant

influence, however, on the form of the spectrum in the low-wavenumber and

acoustic domains through the redistribution of wall pressures.

Indeed, it has been argued [71, 76–79] that, except at low frequencies, the

aerodynamic sound generated by boundary-layer flow over a rough wall is

produced primarily by scattering of the convective wall pressures. According

to Hersh [71], the intensity of the roughness noise radiation can be expressed

in terms of the values of P (κ, ω) in the acoustic domain, and this implies that

surface roughness must produce substantial differences between the smooth- and

rough-wall pressure spectra at acoustic wavenumbers, and presumably also in the

adjacent subconvective region.

Howe [79] then considered the influence of surface diffraction by the roughness

elements beneath a turbulent boundary layer, and found that the rough-wall

pressure spectrum differs from that on a smooth wall on two counts: (i) the strengths

of the turbulence Reynolds stresses that are ultimately responsible for the pressure

fluctuations are increased by the action of surface roughness; and (ii) the near fields

produced by those enhanced pressure sources are redistributed in the wavenumber

plane by diffraction by the roughness elements. His analysis indicates that surface

diffraction is significant only in the low-wavenumber and acoustic domains, and is

progressively more important as the frequency increases.

Based on the smooth-wall formula by Chase [26], an empirical model was also

proposed by Howe [79] to formulate the rough-wall pressure spectrum, which

incorporates the effects of interstitial flows and wake formation by large roughness

elements. However, it is unable to fix the values of all adjustable parameters due to

insufficient experimental data so far. The fixed parameters determine the shape of

the spectrum, but not its absolute level. Further measurements are therefore needed

to complete the specification of this empirical model.
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2.3 Sound Generation by Surface Roughness

2.3.1 General introduction

Intense surface pressure fluctuations beneath a turbulent boundary layer generate

sound and structural vibrations. Sound is produced directly by aerodynamic

sources within the fluid and indirectly by the interaction of hydrodynamic pressures

and the surface vibrations with discontinuities of the wall (ribs, rivets, joints,

etc.) [18, 26]. At low subsonic Mach numbers, the phase velocity ω/κ1 of surface

pressures in the convective domain is subsonic, and these pressures therefore

decay rapidly with distance from the wall and do not correspond to sound waves.

However, convective pressures can generate sound (and structural vibrations) when

the wall is rough or has other discontinuities at which convective energy is scattered.

In the acoustic domain κ1 < |k0|, the phase velocity is supersonic; here disturbances

propagate to the far field and wall pressure fluctuations are actually sound waves

produced directly either by boundary-layer quadrupoles [95] or by the scattering of

convective pressures and flow-induced structural motions.

Howe [81, 82] studied the sound produced by turbulent flow over a rigid

wall (boundary-layer noise), and obtained the acoustic frequency spectrum of the

smooth-wall boundary-layer noise. At low Mach numbers it is probable that the

predicted levels by the smooth-wall formula will fall far below observed levels.

Howe argued that this is because in practice the wall is inhomogeneous owing to

the presence of small irregularities. In the absence of such irregularities, sound

is generated by a relatively inefficient mechanism, “quadrupole” sound sources

varying as U8 [18, 95], in which the wall behaves predominately as a passive

reflector of the generated sound.

For an inhomogeneous wall, surface roughness first enhances the turbulence

production especially in the near wall region [130] and presumably the intensity of

quadrupole noise radiated directly from the flow. However, sound is also produced

indirectly by “dipole” sources† associated with the scattering of energy from the

†The dipole source has a relative efficiency that is nominally of the order 1/M2 � 1 to the
quadrupole source [35].
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convective (hydrodynamic) region of the wall pressure fluctuations and by the

scattering of turbulence excited structural modes. This sound is therefore referred

to as surface roughness noise in this thesis (or rough-wall boundary-layer noise in some

literature).

Because the intensity of surface roughness noise varies as U6 it is likely to

dominate in low-Mach-number applications (e.g. water flows). In such applications

the acoustic wavelength will likely be large compared to the boundary layer scales,

and these long wave motions can couple to the supporting structure of the flow

surface and hence induce vibration [64]. This sound could become a potential source

contributing to the noise from low-speed vehicles, such as ships, submarines and

approaching aircraft. Therefore it is critical to understand surface roughness noise

for prediction purposes in vehicle design and operation.

Below is a review and discussion on what is known about the fundamental

characteristics of this noise source. Unlike the large amount of research efforts

in wave scattering from rough surfaces and rough-wall turbulent boundary-layer

flow, previous studies on sound generation by surface roughness are comparatively

limited. Recently, Grissom et al. [64] reviewed the theoretical and experimental

work on this topic, relying heavily on Blake [18] which covers much of the relevant

literature in this area. They commented that in total only a handful of studies have

been performed and their results do not paint a unified picture. There is a significant

disagreement over its scaling and hence the source mechanisms. In the review we

commence with a brief introduction on previous experimental measurements of

surface roughness noise and then focus on the theoretical modelling of its possible

source mechanisms. Detailed scaling analysis can be found in recent publications of

Grissom et al. [64, 65] and Glegg et al. [61].

2.3.2 Experimental measurements

The experimental measurements of surface roughness noise are technically difficult

because its spectral levels tend to be very low and thus difficult to detect from

background noise or other sources. Few researchers have attempted to study
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experimentally the far-field radiated noise from rough-wall boundary layers. One of

the early work was published by Skudrzyk and Haddle [136] in 1960. In this study,

they measured the noise generated by flow around a rotating cylinder immersed in a

water tank using large-diameter hydrophones mounted on the tank wall. Increases

in the overall sound pressure level (OASPL) with the cylinder speed raised to the

power of 6, 10.3 and 12 were recorded for a painted cylinder surface and one coated

with 60 and 180 grit roughness. The first of these results is consistent with a dipole

source and is supported by subsequent studies.

Chanaud [23] then measured the noise generated in the flow around a spinning

disk mounted inside an anechoic chamber. This study tested a smooth disk,

along with disks roughened with 0.032 inch grain sandpaper on the edges and

disks with roughened rings on the surface. Both roughened disks produced

significantly greater high-frequency noise (> 3 kHz) and the OASPL recorded

from the roughened-ring disk was found to vary as the 6th power of the edge

speed. Chanaud attributes part of the high-frequency noise to shear stress

dipoles enhanced by the surface roughness, but his directivity measurements show

evidence of a dipole perpendicular to the disk surface that is not easily accounted

for from this mechanism.

Cole [29] studied the radiated noise from boundary-layer flow over smooth walls

and walls roughened by strips and areas of 40 and 80 grit sandpaper in an anechoic

chamber by using a directionally sensitive microphone system. Many of the noise

spectra measured by Cole show the roughness enhanced noise levels by about 3 dB.

Cole attempted to scale these results as a dipole or quadrupole and found that both

scalings applied to some degree.

In 1983 Hersh [71] measured the sound radiated from the open ends of two

internally roughened pipes produced by a low Mach number stream of turbulent air

exhausting from the pipe. In the first experiment, measurements with a smooth pipe

wall showed the OASPL to vary as the 8th power of the flow velocity, consistent with

jet noise emitted from the pipe exhaust. Measurements with walls roughened with

40 grit sandpaper showed a 6th power variation, consistent with a dipole source.

Hersh contends that this dipole source is produced specifically by the fluctuating
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shear stress promoted by roughness. In the second and more comprehensive

experiment, Hersh found that transitionally rough surfaces (ksuτ/ν < 50) consisting

of 80, 100 and 120 grit sandpaper produced fairly low amplitude sound at high

frequencies (> 10 kHz), while fully rough surfaces (ksuτ/ν > 400) produced

significantly more sound (∼ 15 dB) over the full measured frequency range.

Variations in the OASPL with flow speed suggest a dipole source and correlate well

when normalized on (ρ/c)2u6
τ .

The most recent, and systematic experimental study was reported by Grissom

et al. [65] in 2007 in which the noise generated by turbulent flow over rough

surfaces was measured in a wall-jet facility. A number of surface roughness from

standard aluminum oxide sandpaper (40–220 grit) and heavier duty floor sanding

sheets (20–80 grit) was tested by using three microphones in a triangle. One

of the objectives of this study was to infer the scaling through determining the

form and intensity of the roughness noise spectrum. A nondimensional frequency

based on outer flow variables, ωδ∗/Uc, was found to normalize all measurements of

roughness noise, and the amplitude scaling revealed the presence of two regions

split at ωδ∗/Uc = 20. In the low-frequency range the acoustic spectra are best

modelled on the maximum turbulent velocity fluctuations to the 5th power, while

the high frequency region is controlled by the convective velocity to the 7th power.

Grissom et al. [65] contend that this suggests the existence of a low-frequency

region controlled by a scattering, dipole-type source mechanism due to the surface

roughness, while the high-frequency region is dominated by a quadrupole source

due to the roughness-enhanced boundary-layer turbulence.

Apart from the above far-field studies, there were at least two studies of the

near-field characteristics of surface roughness noise by Farabee and Geib [49] and

Smol’yakov [139] which have been reviewed by Grissom et al. [64].

2.3.3 Theoretical modelling

The majority of the theoretical work on surface roughness noise and its source

mechanisms was carried out by Howe who has developed a diffraction theory
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distributed in a series of publications [76–79, 81, 82]. A very recent contribution to

the roughness noise mechanism was made by Glegg et al. [61] in 2007. Basically, two

alternative source mechanisms for the surface roughness generated boundary-layer

noise have been identified:

(i) Sound Scattering: The first mechanism is based on the concept that the

hydrodynamic pressure fluctuations in the boundary layer are scattered into

acoustic waves by the roughness elements. This mechanism can be divided

into incoherent scattering and coherent scattering dependent on discrete or

continuous surface roughness.

(ii) Drag Dipole: The alternative theory is based on the concept that each

individual roughness element radiates sound as a drag dipole source due to

the enhanced shear stress at the wall or surface pressures.

These two mechanisms are dependent on the size of the roughness elements relative

to the length scales of the boundary-layer velocity profile regions, as illustrated in

Figure 2.3. Previous theoretical work on each mechanism will be introduced below

separately.

Figure 2.3: Boundary-layer velocity profile regions and their relationships with the source
mechanisms of surface roughness noise. Regions: I – viscous sublayer, II –
logarithmic layer, III – outer region. Source mechanisms: (i) sound scattering
and (ii) drag dipole.
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2.3.3.1 Sound scattering (incoherent)

The source mechanism of sound scattering (incoherent) was firstly proposed

by Howe [77] in 1984 and applies to the roughness elements contained in the

boundary-layer regions I and II (see Figure 2.3). It assumes that the near-field

hydrodynamic disturbances in a turbulent boundary layer interact with the surface

irregularities and produce radiated sound by scattering at the roughness elements

in isolation. The turbulent near field on each roughness element would then

be uncorrelated and the sound generation from multiple roughness elements is

obtained by incoherently summing the contribution from each individual element.

The sound power from this source is therefore proportional to the number of

roughness elements per unit area.

Inspired by the measurements of Hersh [71] and his conclusion on the dipole

nature of roughness generated noise, Howe [78, 79, 81, 82] developed a theory for

the wall pressure spectrum and radiated noise generated by surface roughness. In

the earliest work, Howe [77] presented an analytical model on the generation of

sound by turbulent boundary-layer flow over a rough wall, and speculated that the

roughness generated noise would be a substantial fraction of the airframe noise of

an airplane flying in the “clean” configuration. In this theory and the subsequent

work [78, 79, 81, 82], Howe considers the idealized case in which the rough surface

is invariably modelled by randomly distributing rigid, hemispherical bosses over an

otherwise smooth plane. It is assumed that the turbulent boundary-layer roughness

noise is produced primarily by the diffraction of the turbulent hydrodynamic near

field (pseudo-sound) by the roughness bosses.

The analysis is according to the classical, ideal fluid diffraction theory so that

the viscous stresses on the wall can be disregarded. This approximation is likely

to be adequate for the roughness Reynolds number Reτ = ksuτ/ν > 10, where the

equivalent roughness height ks is determined by fitting a conventional logarithmic

curve to the mean boundary-layer velocity profile [130]. In this case the roughness

bosses protrude beyond the viscous sublayer (Region II), and this is consistent with

the usual criteria (namely Reτ > 5) for a surface to be hydraulically rough.
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An important limitation of the above theoretical approach [77] lies in the

fact that it is unable to account for local effects such as the formation of wakes

(vortex shedding) by the roughness elements, which creates new noise sources

during the interaction of the turbulence with the wall. A first approximation is

therefore obtained by assuming that all of the significant turbulent pressure sources

lie above the roughness elements, and Howe anticipates that this approximation

is only likely to be adequate for surfaces whose roughness elements do not

penetrate beyond the buffer zone into the fully developed turbulent region of

the flow†. In this case the acoustic frequency spectrum PR(x, ω) of the far-field

radiated roughness noise can be expressed as an infinite integral in terms of

the smooth-wall wavenumber-frequency spectrum Ps(κ, ω) of the hydrodynamic

pressure fluctuations on a control surface located at a distance R from the mean

wall plane, where R is the characteristic height of the roughness elements.

There have been various published empirical models for the smooth-wall

wavenumber-frequency spectrum Φ̃p(κ, ω), as introduced in Section 2.2.2.2. These

models can be related to Ps(κ, ω) that is directly connected to the cross-spectral

density of the Reynolds stresses, and so can be expressed in terms of uτ and δ

since the fluctuating Reynolds stresses scale on ρu2
τ and the distance they occupy

from the wall scales on δ. For moderately rough surfaces, we make the same

assumption as Howe [77] in this thesis that the principal differences in the features

of the wall pressure spectrum from those of the wall pressure spectrum on a

smooth wall are accounted for by the differences in uτ and δ. This is expected

to be a good approximation especially in the vicinity of the convective ridge [25].

Therefore in this approach the rough-wall wavenumber-frequency spectrum may

be approximated by a smooth-wall formula provided that uτ and δ are increased to

compensate for the enhanced surface drag and turbulence production [130].

The integral of PR(x, ω) was conventionally evaluated by means of asymptotic

approximation [77, 79] based on the wall pressure spectrum being sharply peaked in

the vicinity of the convective ridge. A series of empirical formulae for PR(x, ω) were

†In fact, Howe’s theory of sound scattering can be applied to roughness elements that lie in the
logarithmic layer (Region II). It has been confirmed [61] that the effect of shear stress fluctuations due
to vortex shedding is negligible compared to the sound scattering mechanism (see Section 2.3.3.3).
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also proposed by Howe [79, 81, 82] in which the values of adjustable coefficients

were partially estimated by fitting to the noise spectra of a mixture of transitional

and full roughness measured by Hersh [71]. These coefficients fix the shape of the

roughness noise spectrum, but it was not possible to derive the absolute level of

PR(x, ω) from the Hersh data due to the unknown effects of acoustic refraction by

the free-jet shear layers downstream of the nozzle exit. One primary objective of the

theoretical work in this thesis, therefore, is to develop a reliable model to predict the

far-field radiated roughness noise in both spectral shape and absolute level.

Howe [78] then extended the inviscid diffraction theory to ascertain the

possible influence of viscous wall stresses on the diffraction mechanism. In these

circumstances the roughness elements are assumed to be sufficiently small and

contained entirely within the viscous sublayer (i.e. Region I, Reτ < 5) that the

viscous “no-slip” condition at the wall may be applied iteratively on the mean plane

of the wall. By this means it is concluded that over the whole frequency range

in which roughness noise is expected to be significant, viscous effects increase the

levels of the radiated sound by 2 or 3 dB at the most.

2.3.3.2 Sound scattering (coherent)

If the surface roughness can be considered as a continuous field instead of

composed of discrete roughness elements, the incoherent scattering mechanism may

underestimate the total sound field. Morse and Ingard [112] presented a formulation

for acoustic scattering by rough surfaces with continuous roughness elements.

Grissom et al. [64] recently presented that this theory can be modified to apply

to the scattering of hydrodynamic pressure fluctuations by a rough surface. The

coherent scattering mechanism was then reworked by Glegg et al. [61] in 2007 for the

roughness elements protruding into the logarithmic layer (Region II in Figure 2.3).

Their work is based on Morse and Ingard’s theory and the primary change is that

the incident acoustic wave is replaced by a hydrodynamic pressure perturbation.

In this theory, Glegg et al. focused on the formulation of the frequency

scaling of radiated roughness noise spectrum, and hypothesized that the frequency
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scaling should be based on the correlation length scale of the roughness element

distribution instead of the roughness height as assumed by Howe [79, 81, 82]. The

coherent scattering mechanism therefore has a different scaling from the incoherent

one proposed by Howe, although Glegg et al. estimated that the dimensional peak

frequency is approximately the same in both cases. However, the spectral peak

levels of both incoherent and coherent mechanisms appear very similar.

Unlike Howe’s diffraction theory [77–79, 81, 82] assuming hemispherical

roughness elements, Glegg et al.’s theory [61] aims to include an arbitrary

distribution of roughness elements. However, an important assumption in Morse

and Ingard’s theory [112] is that the rough surface defined by x2 = ξ(x1, x3) with the

mean plane at x2 = 0 should satisfy the condition ∇1,3 ξ � 1, so that the gradient of

the Green’s function normal to the rough surface can be approximated by

∂G

∂n
≈ ∂G

∂x2

− ∂ξ

∂x1

∂G

∂x1

− ∂ξ

∂x3

∂G

∂x3

. (2.12)

This implies that the theory by Glegg et al. only applies to rough elements with

(a) small curvature (b) large slope

Figure 2.4: Rough surfaces with different values of ∇ξ.

sufficiently small curvature (see Figure 2.4(a)). For common surfaces on aircraft and

ships, the roughness due to materials, paint finishes or imprecise machining during

manufacture may fall into this category. However, the application of this theory is

restricted in the case of rough surfaces with large slope of surface irregularities, e.g.

discontinuities (rivets, ribs, joints, etc.) or environmental contamination (accretions

caused by pollutants and organic matter), as shown in Figure 2.4(b).

2.3.3.3 Unsteady drag due to enhanced shear stress

The alternative source mechanism is the sound generated by enhanced shear stress

fluctuations on the wall which are related to the unsteady forces due to local vortex

shedding from each roughness element. In this mechanism the roughness elements
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can also be regarded as individual incoherent sources and the radiated sound level

increases in proportion to the number of roughness elements. As illustrated in

Figure 2.3, this mechanism applies to large roughness elements that protrude far

beyond the viscous sublayer in Region II (relatively large elements) or Region III

(very large elements) and hence result in the additional shear stresses.

The mechanism of the shear stress noise has been discussed by Howe [76]

and Smol’yakov [140] but not fully defined in the literature. It was argued that

this source mechanism is negligible compared to the sound scattering mechanism.

Glegg et al. [61] recently studied this mechanism for relatively large roughness

elements in Region II in company with their work on the coherent scattering

mechanism in 2007. The purpose was to clarify whether this assumption will hold as

the roughness elements become large enough that they protrude out of the viscous

sublayer. In this work, the physical process is assumed to be the same as noise

from the unsteady loads on fixed objects in a steady flow and so each individual

roughness element behaves as a drag dipole. Glegg et al. applied the Ffowcs

Williams-Hawkings (FW-H) equation [53] to give the acoustic field radiated by

the drag fluctuations and obtained the far-field acoustic spectrum in terms of the

spectrum of the unsteady drag on each roughness element. The drag spectrum was

then determined by using existing semi-empirical techniques [60, 114] for estimating

the noise from bluff bodies, which will be introduced in Chapter 6.

As for the scattering mechanism, Glegg et al. [61] derived the formulation of

the frequency scaling for the noise from the shear stress. They compared the

scaling laws of both mechanisms and found that the two mechanisms have distinctly

different scaling. The predicted peak frequency of the shear stress source is about

half of the scattering mechanism. When the roughness elements do not protrude

beyond the logarithmic layer, the spectral peak of the shear stress noise is lower than

that of the scattering noise by ∼ −46 dB, which tends to confirm the assumption of

Howe that roughness noise from shear stress enhancement is insignificant [76] and

that the noise is dominated by the scattering of hydrodynamic pressure fluctuations

into acoustic waves by the roughness elements [77–79].

When the roughness elements become larger that they protrude into the outer



34 CHAPTER 2: LITERATURE REVIEW

region (Region III), it can be anticipated that the unsteady drag due to shear stress

fluctuations will be further enhanced and produce stronger drag dipoles. Glegg

et al. [61] also considered this case and attempted to similarly derive the frequency

scaling by approximating the flow velocity in the outer region. They speculated that

the spectral peak would occur at a frequency comparable to the noise generated

by scattering. However, the classical scaling of boundary-layer parameters is not

applicable to roughness elements this large, and thus they contended that it is

probably unreasonable to estimate the spectral level in this case.

In this thesis, the drag dipole mechanism will be extended to very large

hemispherical roughness elements that protrude far beyond the logarithmic layer

(i.e. in the upper section of Region III). In this case the unsteady drag is produced

principally owing to the fluctuation in surface pressures instead of enhanced shear

stresses, and the free-stream flow parameters can be used to describe the incident

flow onto a roughness element with confidence. The acoustic frequency spectrum is

derived based on a recent analytical model [83] for the vortex shedding and hence

the lift and drag fluctuations on a sphere in a nominally steady, high Reynolds

number, incompressible flow. A modified model is developed from this sphere

model to account for the unsteady drag spectrum of a wall-mounted hemisphere.

Noise spectra of this source are predicted and compared with those of the scattering

mechanism. Details of the modified drag model and noise prediction will be

discussed in Chapter 6.

In conclusion, the three source mechanisms described above scale differently

with the roughness height or the roughness correlation length scale. However, it

has been confirmed that the sound scattering mechanism dominates for roughness

elements contained in the logarithmic layer and the spectral peaks of both

incoherent and coherent scattering are at similar levels. In the current research, we

will focus our analysis on the incoherent scattering mechanism as the framework

of this mechanism is relatively systematic and mature. Howe’s work [77] on this

mechanism is therefore applied as a baseline to formulate the diffraction problem

of turbulent boundary-layer roughness noise of this thesis, and will be described in

detail in Chapter 3.



Chapter 3

Theoretical Modelling

3.1 Introduction

IN the previous chapter, we determined to base the formulation of surface

roughness noise on the incoherent sound scattering mechanism which is

relatively systematic and mature compared to other source mechanisms. We derive

a theoretical model in this chapter to predict the surface roughness noise radiated to

the far field.

This chapter commences with a formulation of the diffraction theory of turbulent

boundary-layer roughness noise in Section 3.2. This is based on the early analytical

model of Howe [77], and the major derivations are presented here for the sake of

completeness. The acoustic pressure frequency spectrum PR(x, ω) is derived in

terms of an infinite double integral and the final expression takes the form of a

weighted integral over the smooth-wall wavenumber-frequency spectrum Ps(κ, ω)

through modelling the turbulence Reynolds stress sources. In Section 3.3, we relate

Ps(κ, ω) with the available empirical model Φ̃p(κ, ω), and determine the increased

boundary-layer properties uτ and δ by means of a skin friction formula [106] for a

rough wall to account for the enhanced mean drag and turbulence level.

Section 3.4 discusses alternative methods to evaluate the integral of the far-field

acoustic spectrum PR(x, ω). Attention is focused on a generally more accurate

method by direct numerical integration in the wavenumber space. The numerical

method is then adopted in this work to predict the roughness noise spectrum and

35
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it reproduces the spectral characteristics of both Howe’s empirical model [82] and

Hersh’s experimental data [71].

3.2 Diffraction Theory of Surface Roughness Noise

3.2.1 Formulation of the diffraction problem

The general idea of the diffraction theory of roughness generated sound is

introduced by considering turbulent boundary-layer flow over a rough, rigid wall

defined by the surface x2 = ξ(xι), where the Greek suffix ι varies over the 1-direction

and 3-direction parallel to the mean plane of the wall. The rough wall is formed by

a random distribution (N per unit area) of rigid hemispherical bosses of radius R

over the plane x2 = 0 (see Figure 3.1), and the fluid occupies the region x2 > ξ(xι).

Figure 3.1: Schematic illustration of the diffraction problem.

The mean flow is in the positive x1-direction, and is of uniform mean density ρ0

and sufficiently low Mach number. Pressure fluctuations p are related to turbulent

fluctuations in the Reynolds stress by Lighthill’s equation [95] in the reduced form:(
1

c2
∂2

∂t2
−∇2

)
p = Q(x, t), (3.1)

where Q(x, t) is the turbulence quadrupole source,

Q(x, t) =
∂2(ρ0vivj)

∂xi∂xj

, (3.2)

v being the perturbation velocity. Here and henceforth it is implicitly assumed that

the dominant Reynolds stress fluctuations ρ0vivj occur in the region x2 > R above

the roughness elements.
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Equation (3.1) is to be solved for the pressure in terms of the Reynolds stress

fluctuation ρ0vivj , subject to the inviscid, high-Reynolds-number, rigid boundary

condition
∂p

∂xn

= 0 on x2 = ξ(xι), (3.3)

where xn is a local coordinate normal to the rough wall. In application, the

roughness elements generally protrude beyond the viscous sublayer at the wall into

the fully turbulent region of the boundary layer. Even when this is not the case,

however, it appears that only a small error is incurred by using inviscid boundary

conditions at the wall [78]. To solve this equation, a Green’s function G(x,y, t, τ)

is introduced, which is the solution of wave equation (3.1) and boundary condition

(3.3), with outgoing wave behaviour when the source term Q is replaced by the

impulsive point source

δ(x− y)δ(t− τ), x2, y2 > ξ(xι). (3.4)

G(x,y, t, τ) provides the response at observation point x at time t to a pulse released

at source point y at time τ .

An approximate Green’s function was derived by Howe [77] that satisfies the

boundary condition ∂G/∂n = 0 on an infinite number of hemispherical bosses of

radius R, distributed randomly over the plane y2 = 0. It is assumed that turbulence

of low Mach number generates sound whose characteristic wavelength greatly

exceeds the boundary-layer thickness δ, and therefore the roughness height R. In

these circumstances, Howe gave the Green’s function in the form

G(x,y, t, τ) =
δ(t− τ − |x− Y |/c)

2π|x− Y |
, (3.5)

provided that the far-field point x is situated at a distance much greater than R

from the centre of the nearest boss, i.e., attention is confined to components of the

diffracted field whose length scales are much greater than R.

In the Green’s function (3.5), Y is defined by
Y2 = y2

Yι = yι +
∑
m

µR3(yι − xmι)

2|y − xm|3
, (ι = 1, 3)

, (3.6)



38 CHAPTER 3: THEORETICAL MODELLING

where xm = (xm1, 0, xm3) is the centre of the mth boss on the plane. The factor µ is

to take approximate account of mutual interactions between neighbouring bosses.

It is not appreciably different from unity, and is given (to within a relative error of

about 4%) by

µ =
1

1 + σ/4
, (3.7)

where

σ = NπR2 (3.8)

is the surface roughness density, i.e. the fractional area of the plane covered

by roughness bosses. The function Yι(y) is identical with the velocity potential

describing an ideal incompressible flow in the ι-direction over the rough wall. It

satisfies
∂Yι

∂yn

= 0 on y2 = ξ(yι), (3.9)

and ensures that the Green’s function satisfies ∂G/∂n = 0 when the acoustic

wavelength is much larger than R.

Following routine applications of the Green’s second theorem, we can specify

the formal solution to Equation (3.1) as:

p(x, t) =

∫ ∞

−∞

∫
V (y)

G(x,y, t, τ)Q(y, τ) d3y dτ

+

∫ ∞

−∞

∮
S(y)

[
p(y, τ)

∂G(x,y, t, τ)

∂n
−G(x,y, t, τ)

∂p(y, τ)

∂n

]
dS(y) dτ,

(3.10)

which is an equation for p of the pressure wave within and on the surface bounding

the medium, in terms of a volume integral of the source function Q over the

bounded volume V and a surface integral of the boundary values of p and its

outward normal gradient over the boundary surface S [112]. It states that the total

acoustic field at the observer x is the summation of the fields from the elementary

sources Q d3y plus the waves reflected by the boundary surface. Because p and G

both satisfy the vanishing normal derivative condition (3.3), the surface integral in

Equation (3.10) vanishes, and thus the acoustic pressure p(x, t) can be related to the

Reynolds stress quadrupole source Q(y, τ) by

p(x, t) =

∫ ∞

−∞

∫
V (y)

G(x,y, t, τ)Q(y, τ) d3y dτ. (3.11)
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3.2.2 Acoustic spectrum of the radiated sound

The far-field acoustic frequency spectrum will be derived concisely. A different

Fourier transform from that of Howe [77, 79] is introduced according to the

reciprocal relations:

f̂(x2,κ, ω) =

∫∫ ∞

−∞
f(x, t)e−iκ·x+iωt dx1 dx3 dt, (3.12a)

f(x, t) =
1

(2π)3

∫∫ ∞

−∞
f̂(x2,κ, ω)eiκ·x−iωt d2κ dω, (3.12b)

κ = (κ1, 0, κ3). (3.12c)

This ensures that the Fourier transform (3.12) is consistent with that of the

wall pressure spectrum models [63], and Howe’s derivation should be modified

accordingly.

In the far field the acoustic power radiated from unit area of the rough wall is

equal to the mean acoustic intensity flow, 〈 pv〉, where the angle bracket denotes an

ensemble average near the wall whereQ = 0. The x2-component of the perturbation

velocity, v, is determined from Equation (3.11) by making use of the low Mach

number approximation to the linearized momentum equation:

ρ0
∂v

∂t
= − ∂p

∂x2

. (3.13)

The rough-wall acoustic power spectrum Π (ω) is defined as the Fourier transform

of 〈pv〉 with respect to t,

Π (ω) =

∫ ∞

−∞
〈p(x, τ)v(x, τ + t)〉eiωt dt, (3.14)

which expresses the frequency spectrum of the total radiated sound power per unit

area of the rough wall.

Following Howe [77], from Equations (3.5–3.11), (3.13) and (3.14), Π (ω) can be

expressed as

Π (ω) =
Nπ2µ2R6ω2

6ρ0c3

∫ ∞

−∞
Ψ(κ)e−2κR

×
∫ ∞

0

S(y2, y
′
2; κ, ω)ei(γy2−γ∗y′2) dy2 dy′2 d2κ,

(3.15)
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where the asterisk denotes the complex conjugate. The term γ is defined by

γ(κ) = (k2
0 − κ2)

1
2 (3.16)

with the acoustic wavenumber k0 = ω/c, and the branch cuts are chosen such that

sgn(γ) = sgn(k0) when γ is real and γ → +iκ as |κ| = κ→∞ on the real axis. S is the

cross-spectral density of the turbulence Reynolds stress according to the definition:

S(y2, y
′
2; κ, ω) =

1

(2π)3

∫∫ ∞

−∞
〈Q̂(y2,κ, ω)Q̂∗(y′2,κ

′, ω′)〉 d2κ′ dω′, (3.17)

where Q̂(y2,κ, ω) is the Fourier transform of the Reynolds stress source Q(y, τ).

Note that Q̂(y2,κ, ω) is well defined only for y2 > R, and it vanishes in the region

occupied by the roughness bosses.

In addition, the term Ψ(κ) is determined by the average number of roughness

bosses in unit area of the plane. The precise value of Ψ(κ) is unknown, but for

practical purposes use may be made of an interpolation formula given by Howe [77,

79], namely

Ψ(κ) =

[
1− σJ1(2κR)/κR

]3[
1 + σJ1(2κR)/κR

] , (3.18)

where J1 is the Bessel function of order unity. This result is exact for κR = 0, and

varies significantly only when κR exceeds unity. Possible discrepancies between

interpolated and exact values for large values of κR are of no practical importance

because of the accompanying exponential factor e−2κR in Equation (3.15).

Let PR(x, ω) denote the frequency spectrum of the acoustic pressure fluctuations

produced by diffraction by a finite area A of the rough wall, defined such that

〈p2(x, t)〉 =
1

2π

∫ ∞

−∞
PR(x, ω) dω. (3.19)

If the origin of coordinates is taken at the centre of the region A, and the observer x

is in the acoustic far field from A in a direction specified by the polar angles (θ, φ), as

illustrated in Figure 3.2, it follows from Equations (3.14), (3.15) and (3.19) that [77]

PR(x, ω) =
ANπµ2R6k2

0

4|x|2

∫ ∞

−∞

(κ · ñ)2Ψ(κ)e−2κR

κ2

×
∫ ∞

0

S(y2, y
′
2; κ, ω)ei(γy2−γ∗y′2) dy2 dy′2 d2κ.

(3.20)
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Figure 3.2: Sound radiation from a region of area A of the rough wall.

where ñ = x/|x|, and

x = |x|(cos θ, sin θ cosφ, sin θ sinφ),

(0 6 θ 6 π, |φ| 6 π/2)
(3.21)

is the polar representation of the far-field observer x. In this formula, PR(x, ω)

expresses the frequency spectrum of the acoustic pressure at the observer x which

is radiated within the solid angle element sin θ dθ dφ.

3.3 Rough-Wall Turbulent Boundary-Layer Pressures

3.3.1 Modelling turbulence Reynolds stress sources

To complete the determination of the acoustic frequency spectrum PR(x, ω), it

is necessary to model the turbulence Reynolds stress source term Q(y, τ). The

experimental data of Blake [17] and Schultz and Flack [131] have shown vrms/uτ

as the same function of y/δ for different surface roughness and smooth walls, where

vrms is the root mean square of the perturbation velocity.

We therefore assume that the source Q(y, τ) scales as u2
τ when expressed as

a function of y2/δ. To implement this scaling it is convenient to introduce a

hypothetical smooth-wall pressure fluctuation ps(x, t) which would be generated

on a smooth wall by the same Reynolds stress source. It is determined by solving
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Equation (3.1) with the boundary condition

∂ps

∂x2

= 0 on x2 = 0, (3.22)

and its Fourier transform is given by [34]

p̂s(0,κ, ω) = − 1

iγ(κ)

∫ ∞

0

Q̂(y2,κ, ω)eiγy2 dy2. (3.23)

The conventional wavenumber-frequency spectrum Ps(κ, ω) of a smooth wall is the

Fourier transform of the cross correlation of the pressure in the plane of the wall,

〈 p̂s(0,κ, ω) p̂∗s(0,κ
′, ω′)〉 = (2π)3Ps(κ, ω)δ(κ− κ′)δ(ω − ω′). (3.24)

For a rough wall it is necessary to relocate the plane of definition to be x2 = R+0,

just above the roughness bosses. By hypothesis, Q vanishes for y2 < R, i.e., the

principal Reynolds stress noise sources are assumed to be confined to the region

y2 > R. The substitution of Equation (3.23) into (3.24) gives

Ps(κ, ω) =
1

|γ(κ)|2

∫ ∞

0

S(y2, y
′
2; κ, ω)ei(γy2−γ∗y′2) dy2 dy′2, (3.25)

where the Reynolds stress cross-spectral density S(y2, y
′
2; κ, ω), as defined in

Equation (3.17), is highly peaked in the neighbourhood of the convective ridge of

wavenumber-frequency space. Substituting Equation (3.25) into (3.20), we obtain

the acoustic frequency spectrum PR(x, ω) in the reduced form:

PR(x, ω) =
ANπµ2R6k2

0

4|x|2

∫ ∞

−∞

(κ · ñ)2|γ(κ)|2Ps(κ, ω)Ψ(κ)e−2κR d2κ

κ2
, (3.26)

which is equivalent to Equation (3.16) in Howe’s model [77].

3.3.2 Wall pressure wavenumber-frequency spectrum

In Equation (3.26) the wall pressure spectrum Ps(κ, ω) which would be induced on

a fictitious smooth wall by the rough-wall turbulence Reynolds stresses needs to be

specified to evaluate PR(x, ω). This can be achieved by making use of the available

models for the pressure spectrum on a smooth wall and scaling the Reynolds

stresses through their dependence on u2
τ and δ.
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Graham [63] has drawn a comparison of different models† for the smooth-wall

wavenumber-frequency spectrum of turbulent boundary-layer pressures. In his

paper the nondimensional wavenumber-frequency spectrum Φ̃p(κ, ω) was defined

on x2 = 0 in the form:

2πδ(ω − ω′)Φ̃p(κ1, κ3, ω)

=
ω2

U2
c Φ(ω)

∫ ∞

−∞
〈p(x + ∆, ω)p∗(x, ω′)〉e−iκ·∆ d∆1 d∆3,

(3.27)

where the tilde on Φ̃p indicates that it is normalized by Φ(ω)U2
c /ω

2. The typical eddy

convection velocity Uc is assumed to be a fixed fraction of the free-stream velocity U .

Both experiments and numerical simulations indicate that Uc ≈ 0.5–0.7U with only

a weak dependence on the frequency [25]. Φ(ω) is the point pressure frequency

spectrum whose curve-fitted formulation will be discussed in Section 3.4. Similar

to Equation (3.24), Equation (3.27) may be rearranged by integrating on both sides,

yielding

Φ̃p(κ, ω) =
ω2

U2
c Φ(ω)

1

|γ(κ)|2

∫ ∞

0

S(y2, y
′
2; κ, ω)ei(γy2−γ∗y′2) dy2 dy′2. (3.28)

For moderately rough surfaces, we assume that the principal features of the

wall-pressure spectrum would not differ substantially from those of the pressure

spectrum on a smooth wall, especially in the vicinity of the convective ridge [26].

Note that it is now essential to increase uτ and δ in the definition of Φ̃p(κ, ω) to

the rough-wall values in order to compensate for the enhanced surface drag and

turbulence production [18, 130]. In this case, by comparing the definitions (3.25)

and (3.28) we can directly relate Φ̃p(κ, ω) with Ps(κ, ω),

Ps(κ, ω) =
U2

c

ω2
Φ(ω)Φ̃p(κ, ω), (3.29)

provided that the principal contributions to the integral in Equation (3.28) are from

the region y2, y
′
2 > R. Therefore by substituting Equation (3.29) into (3.26) and

rearranging, the far-field acoustic frequency spectrum PR(x, ω) may be expressed

†These models are the Corcos model [31], the Efimtsov model [43], the Smol’yakov and
Tkachenko model [140], the Ffowcs Williams model [52], the Chase I model [25], and the Chase
II model [26], respectively (see Appendix A for details).
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in terms of the smooth-wall wavenumber-frequency spectrum Φ̃p(κ, ω),

PR(x, ω) =
ANπµ2R6

4|x|2
U2

c

c2
Φ(ω)

×
∫ ∞

−∞

(κ · ñ)2|γ(κ)|2Φ̃p(κ, ω)Ψ(κ)e−2κR d2κ

κ2
.

(3.30)

3.3.3 Determinations of uτ and δ

The evaluation of Φ̃p(κ, ω) in Equation (3.30) depends on two boundary-layer

parameters: the friction velocity uτ and the boundary-layer thickness δ, both of

which are enhanced by surface roughness. The principal effect of a rough surface

is to alter the structure of the boundary layer near the wall thereby increasing the

surface skin friction. Hence it is critical to first review the skin friction formula for a

rough wall.

Prandtl and Schlichting [124] derived an interpolation formula for skin friction

based on the sand grain roughness experiments of Nikuradse [115]. For fully

developed roughness flows (i.e. Reτ > 70) over the whole plate, they recommended

a simple formula as: 
cf =

(
2.87 + 1.58 log10

x1

ks

)−2.5

CF =

(
1.89 + 1.62 log10

L

ks

)−2.5 , (3.31)

which was claimed to be valid for 102 < L/ks < 106. In this formula (3.31), cf and

CF are the local and overall skin friction coefficients, respectively; CF is also known

as the drag coefficient for a plate of length L [42],

CF =
1

L

∫ L

0

cf (x1) dx1. (3.32)

For the fully developed roughness flow over a flat plate, the effective equivalent

height of the roughness particles ks is very much larger than the thickness of the

viscous sublayer. In this case CF is independent of ReL and is a function of L/ks

only [44], where ReL = UL/ν is a Reynolds number based on the whole plate.

Mills and Hang [106] compared the formulation of Prandtl and Schlichting [124]

with some experimental data sets for fully rough flow over sand grain roughness
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(Pimenta et al. [122]) and found that it gave an average error of 17.5 percent. They

attributed the discrepancy to the failure of the formulation to account for the wake

component of the mean velocity profile, and proposed a skin friction formula in the

form: 
cf =

(
3.476 + 0.707 ln

x1

ks

)−2.46

CF =

(
2.635 + 0.618 ln

L

ks

)−2.57 , (3.33)

where cf andCF were curve-fitted from the experimental data of Pimenta et al. [122].

This formula gives an average error of 2.7 percent only when compared to the same

data and is valid over a wide parameter range (150 < x1/ks < 1.5× 107).

The two different formulae of skin friction in (3.31) and (3.33) will be compared

in Section 4.4 with experimental data collected by hot-wire measurement. The

accuracy of Mills and Hang’s formula [106] is verified and we hence employ the

skin friction formula (3.33) in this research. With the skin friction determined for a

rough wall, the friction velocity uτ can be obtained through the definition,

uτ = U
√
cf/2. (3.34)

Building on the work of von Kármán [152], Krogstad et al. [93] suggested a

composite relationship to match the mean velocity profile in the logarithmic and

outer regions of a turbulent boundary layer over a rough wall,

u

uτ

=
1

κ0

ln

(
y

ks

)
+B +

2Π0

κ0

w
(y
δ

)
, (3.35)

where κ0 ≈ 0.41 and B = 8.5 are empirical constants. The wake function w(y/δ) is

expressed as follows

w
(y
δ

)
=

1

2Π0

[
(1 + 6Π0)− (1 + 4Π0)

(y
δ

)](y
δ

)2

, (3.36)

where Π0 represents the strength of the wake. The value of Π0 for a rough surface

is typically larger than for a smooth surface, and it varies with different types of

surface roughness. In the present study, Π0 ≈ 0.45 has been tentatively applied

to the rough surface formed by hemispherical bosses because this value gives the

best fit to the boundary-layer thickness measured by hot-wire anemometry (see

Figure 4.19 in Section 4.4.2).
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The boundary-layer thickness δ on a rough wall is therefore determined from

Equations (3.33–3.36). If we take y = δ in Equation (3.35), then at this location

u ≈ U and w(1) = 1. (3.37)

In this case Equation (3.35) is simplified as

U

uτ

=
1

κ0

ln

(
δ

ks

)
+B +

2Π0

κ0

. (3.38)

The only unknown in Equation (3.38) is δ and it can also be expressed in terms of

the skin friction coefficient cf ,

δ = ks exp
(
κ0

√
2/cf − κ0B − 2Π0

)
. (3.39)

This expression gives the local boundary-layer thickness developing on a rough

plate. The average value of δ suitable for crude calculations for the whole plate,

δ̄, can be obtained by substituting CF for cf in Equation (3.39).

3.4 Evaluation of the Rough-Wall Acoustic Spectrum

3.4.1 Asymptotic approximation and empirical model

Howe [77, 79] evaluated the integral in Equation (3.30) approximately to obtain

an estimate of the radiated roughness noise in the far field. As mentioned before

the principal components of the boundary-layer Reynolds stress occur in the

hydrodynamic domain wherein

κ = |κ| ∼ |ω|/Uc. (3.40)

The wall pressure wavenumber-frequency spectrum Φ̃p(κ, ω) is expected to be

sharply peaked in the neighbourhood of a “convective ridge” centred on κ1 ∼

ω/Uc, κ3 = 0, and the main contribution to the integral will therefore be from this

vicinity of the convective ridge. The way Howe evaluated the integral in Equation

(3.30) was to expand the remaining terms in the integrand about the convective

ridge and integrate term by term. It is essentially a representation of asymptotic

approximation, and may be unable to evaluate the integral with sufficient accuracy.
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Howe [79, 81, 82] also proposed empirical models for the rough-wall acoustic

frequency spectrum aimed at larger values ofRwhere there may be interstitial flows

and wake formation. In the most recent work [82], he assumes the empirical model

to be in the form:

ΦR(x, ω)

ρ2
0u

3
τδ

≈ τ0
A cos2 θ

|x|2
R

δ

u2
τ

c20

(ωR/uτ )
3[

1 + β (ωR/uτ )2
]n/2

, (3.41)

where the empirical coefficients, τ0, β and n, are partially estimated by the

experimental data of Hersh [71] on sound radiation by sand-roughened pipes of

various grit sizes. The best fit to Hersh’s data can be achieved by taking

β = 0.0025 and n = 11. (3.42)

Following Howe [82], the “roughness parameter” τ0 depends primarily on the

spacing of the roughness elements, determined by σ:

τ0 ≈ (uτ/Uc)
2(σ/π) when σ � 1. (3.43)

However, these values of adjustable coefficients should be regarded as tentative

because no directivity information is available from the Hersh data [71]. For this

reason, although β and n are capable of fixing the shape of the spectrum (see

Figure 3.4), it is not possible to derive the absolute levels from Hersh’s data.

3.4.2 Direct numerical integration

The direct numerical integration is therefore considered instead to evaluate the

integral in Equation (3.30). It is convenient to introduce the polar representation

(κ, α) in the wavenumber plane, so that

κ1 = κ cosα, κ3 = κ sinα. (3.44)

Combining Equation (3.44) with the definition of the unit vector in the far field

ñ =
x

|x|
= (cos θ, sin θ cosφ, sin θ sinφ) (3.45)

yields κ · ñ in the polar coordinates,

κ · ñ = κ(cosα cos θ + sinα sin θ sinφ). (3.46)
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Therefore the acoustic pressure frequency spectrum PR(x, ω) becomes

PR(x, ω) =
Aσµ2

4|x|2
R4

δ∗4

U2
c

c2
Φ(ω)D(θ, φ), (3.47)

where the non-dimensional term D(θ, φ) gives the directivity information:

D(θ, φ) = I1cos2 θ + I2 sin2 θ sin2 φ+ 2I3 cos θ sin θ sinφ. (3.48)

In the above expression, I1–I3 are integrals with respect to the nondimensional

polar coordinates κδ∗ and α,

I1 =

∫ 2π

0

∫ ∞

0

χ cos2 α dκδ∗ dα, (3.49a)

I2 =

∫ 2π

0

∫ ∞

0

χ sin2 α dκδ∗ dα, (3.49b)

I3 =

∫ 2π

0

∫ ∞

0

χ cosα sinα dκδ∗ dα, (3.49c)

where χ is a non-dimensionalized term,

χ =
[
|γ(κ)|δ∗

]2
Φ̃p(κ, ω)Ψ(κ)e−2κRκδ∗. (3.50)

As is evident from Equations (3.48–3.50), the term I1 cos2 θ describes the effect of a

dipole in the flow direction, and the term I2 sin2 θ sin2 φ accounts for the sound from

a dipole in the plate plane but normal to the flow direction. The integrand in I3

shows the features of a periodic odd function of sinα, and so its integration with

respect to α ∈ [0, 2π] is identically zero. This term will therefore be discarded in the

numerical integration.

It should be noted that the original infinite double integral over rectangular

coordinates in Equation (3.30) is now reduced to a series of mixed double integral

over polar coordinates with directivity information excluded from the integrals,

which greatly improves the computation efficiency. The numerical integrations of

I1 and I2 are then carried out by using the five-point Gauss-Legendre quadrature

with adjustable integration subintervals. Moreover, the infinite κδ∗-integral can

be reduced to a finite integral with sufficient accuracy thanks to the existence of

a weighting function e−2κR in χ. Hence the infinite upper bound in the κδ∗-integral

may be substituted by a positive real number, κδ∗ 6 25δ∗/R, to make the numerical

integration practical.
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It remains to find a suitable form of the point pressure frequency spectrum Φ(ω)

in Equation (3.47). Blake [18] has discussed features of the frequency spectrum of

wall pressures and categorized it into three different frequency regions as below:

Φ(ω) ∼ ρ2u4
τ (δ/Uc)(ωδ/Uc)

2 ωδ/Uc � 1, (3.51a)

Φ(ω) ∼ ρ2u4
τ ω

−1 1 < ωδ/Uc <
1

30
uτδ/ν, (3.51b)

Φ(ω) ∼ ρ2u4
τ ω

−1(ωδ/Uc)
−4 ωδ/Uc >

1

30
uτδ/ν. (3.51c)

However, these regions are not unambiguously identifiable in experimental data,

and hence Ahn [4] approximated a curve fit for the frequency spectrum data in

Blake [17] as:

ΦB(ω) =

(
τ 2
wδ

∗

U

)
2π8.28Sh∗0.8[

1 + 4.1Sh∗1.7 + 4.4× 10−4Sh∗5.9
]

=

(
τ 2
wδ

∗

U

)
g(Sh∗),

(3.52)

wherein τw = ρ0u
2
τ is the mean wall shear stress, and Sh∗ = ωδ∗/U is the Strouhal

number based on the displacement boundary-layer thickness δ∗. It may be assumed

that δ∗ ≈ δ/8 for practical purposes [82].

Figure 3.3: Curve fits of the frequency spectrum of wall pressure fluctuations (Ahn [4]).
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In fact there are other forms of Φ(ω), e.g. the Efimtsov curve fit [43] for the

frequency spectrum of high flight-test data based on the Strouhal number Sh =

ωδ/uτ ,

ΦE(ω) =

(
τ 2
wδ

uτ

)
0.01π[

1 + 0.02Sh2/3
] . (3.53)

The frequency spectra of ΦB(ω) and ΦE(ω) are shown in Figure 3.3. The reason for

choosing the curve fit ΦB(ω) in this work is because it is capable of reproducing the

features in the three different frequency regions as Blake suggested [18], whereas

the Efimsov curve fit ΦE(ω) fails to give these features, notably in the low- and

high-frequency regions.

The main parametric dependency of surface roughness noise can then be

discovered from Equations (3.47–3.50) and (3.52). By substituting Equation (3.52)

into (3.47) and integrating PR(x, ω) with respect to ω, we obtain the mean square

pressure in the form:

〈p2(x, t)〉 =
Aσµ2ρ2

0

8π|x|2c2

(
R

δ∗

)4(
Uc

uτ

)2

u6
τ D(θ, φ)

∫ ∞

−∞
g(Sh∗) dSh∗. (3.54)

This indicates that 〈p2(x, t)〉 scales on the 6th power of Mach number, i.e. 〈p2(x, t)〉 ∼

M6, suggesting that surface roughness noise is a distribution of dipole sources

in nature. In addition, the mean square pressure is proportional to the rough

area A and there is an explicit dependence of 〈 p2(x, t)〉 on R4. However, R also

influences the turbulent boundary-layer properties δ∗ and uτ and the wavenumber

contribution to D(θ, φ) through the weighting function e−2κR in the integrals I1–I3.

The actual dependence on R is therefore more complicated and a full parametric

study is carried out in Section 5.2.3.

3.4.3 Comparison of empirical model with numerical method

A comparison between the empirical model of Equation (3.41) and the results

of the numerical integration of Equations (3.47–3.50) and (3.52), which will be

referred to as the “numerical method”, is illustrated in Figure 3.4 for the following

nondimensional parameters:

σ = 0.2, R/δ = 0.01, Uc/U = 0.6,

uτ/U = 0.05, M = 0.005.
(3.55)
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These values have been selected to enable the comparison with Howe’s empirical

model ΦR(x, ω), and might be encountered in underwater applications. In these

plots the far-field observer is chosen as on the positive x1-axis, i.e., θ = 0 and φ = 0,

leading D(θ, φ) to be reduced to I1.

The numerical integration of PR(x, ω) is repeated with different wall pressure

spectrum models by Corcos [31], Efimtsov [43], Smol’yakov and Tkachenko [140],

and Chase [25, 26]. The Ffowcs Williams model [52] is rejected, as suggested by

Graham [63], because its divergent behavior in the high-wavenumber region does

not satisfy the integral requirement:

1

(2π)2

∫ ∞

−∞
Φ̃p(κ1, κ3, ω)

(
Uc

ω

)2

dκ1 dκ3 = 1. (3.56)

The curves in Figure 3.4 represent the variations of ΦR(x, ω) and PR(x, ω) as

functions of the nondimensional frequency Ω = ωR/uτ . Hersh’s experimental

data [71] for sand-roughened pipes of various grit sizes are also shown as scatter

points. No comparison of the absolute levels of the predicted and measured noise is

possible due to the unknown effects of acoustic refraction by the free-jet shear layers

downstream of the nozzle exit [79]. Accordingly, the heights of the curves have been

Figure 3.4: Comparison of roughness noise spectra predicted by the empirical model [82]
and the present numerical method. O ◦ M Previous experimental data obtained
by Hersh [71].
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adjusted to yield the best fit to the data points.

As shown in Figure 3.4, the shape of the empirical spectrum ΦR(x, ω) fits the

experimental data very well by using the coefficients in Equation (3.42). Moreover,

the comparison between the empirically and numerically predicted roughness noise

spectra exhibits encouraging agreement. Both ΦR(x, ω) and PR(x, ω) peak around

Ω ≈ 13 and decay rapidly at higher frequencies. The relatively abrupt fall-off of

PR(x, ω) is due to the features of Φ(ω) specified in Equation (3.52). In addition,

the numerically predicted spectra obtained from different models of Φ̃p(κ, ω) agree

with one another very well. In this frequency range 3 6 Ω 6 80, the Efimtsov

model reduces to the Corcos model and thus their curves coincide, predicting levels

comparable to other models except when Ω > 60.

3.5 Summary

Howe [77] has developed a theory of sound generation by turbulent boundary-layer

flow over a rough wall in which the surface roughness is modelled by a distribution

of rigid, hemispherical bosses on a rigid plane. The roughness noise is attributed to

the diffraction of the turbulence near field by the bosses, and calculated by means

of conventional asymptotic approximation. An empirical model was also proposed

by Howe [82] by curve-fitting Hersh’s experimental data [71].

In this chapter, the diffraction theory has been extended to numerically quantify

the radiated roughness noise from a finite surface area to the far field using available

empirical models of smooth-wall wavenumber-frequency spectrum scaled by the

enhanced friction velocity and boundary-layer thickness for a rough surface. The

objective has been to ascertain the reliability of this solution scheme. Comparison

of numerically predicted roughness noise spectra with Howe’s empirical model [82]

and previous data measured by Hersh [82] has provided preliminary confirmation

of the validity of the diffraction theory and the solution scheme.



Chapter 4

Experimental Validation

4.1 Introduction

THE objective of this chapter is to validate the theoretical model derived in

Chapter 3 through a series of experiments, so that it can be applied to the

numerical prediction of surface roughness effects to airframe noise. In Section 4.2,

acoustic measurements are conducted by making use of an open-jet wind tunnel

and individual microphones to enable the comparison between the measured and

predicted roughness noise spectra. We make modifications to the prediction model

to take into account the effects of noncompact surface roughness, cross-spectra data

and a partially roughened plate.

Following the preliminary validation of roughness noise in spectral level, we

apply phased microphone arrays to the experimental study in Section 4.3. The

source locations and source strengths of the roughness dipoles distributed on a rigid

plate are identified and discussed. Measurements are performed at three streamwise

locations to explore the dipole directivity features. The array measurements can be

misinterpreted if applied directly to reconstruct dipole sources due to the monopole

assumption in the standard beamforming algorithm [16, 38, 87]. Instead, we process

the theoretical simulation through the same algorithm as the experimental data and

compare the resulting predicted and measured source maps. This is equivalent to

comparing theory and experiment after applying a filter which suppresses much

of the extraneous noise in the experiments. A distribution of incoherent dipoles

53
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is simulated over the rigid plate with the source strengths determined using the

prediction model. Comparison of the beamforming results between measurement

and simulation provides indirect validation of the predicted source type, magnitude

and distribution.

Section 4.4 presents some data from hot-wire measurement to confirm the wake

strength and skin friction coefficient used in the prediction model. We determine

the suitable value of wake strength by comparing with the measured rough-wall

boundary-layer thickness. The accuracy of the skin friction formula (3.33) presented

in Chapter 3 is verified by the experimental data of skin friction coefficient. The

results of the acoustic spectrum measurement, phased array measurement and

hot-wire measurement are then summarized in Section 4.5.

4.2 Acoustic Spectrum Measurement

4.2.1 Experimental setup

The acoustic experiments were conducted in the open jet of a low-speed wind

tunnel in the Whittle Laboratory of Cambridge University Engineering Department

(CUED) to measure the radiated sound from a rough plate. Individual microphones

were first utilized to obtain the acoustic spectrum of radiated roughness noise. A

schematic of the experimental setup is shown in Figure 4.1. The wind tunnel has an

inner cross-section of 0.586× 0.350 m2 at the outlet and a velocity range of 0–31 m/s.

Plastic foam lining on the inner walls and a splitter silencer were installed to reduce

the wind noise and motor noise travelling inside the tunnel.

4.2.1.1 Test flat plate

A large flat plate made of aluminium alloy is placed nominally in the vertical

meridian plane of the open jet, as shown in Figure 4.1. It is secured to a vertical

frame of aluminium rods adjacent to the tunnel outlet (see Figure 4.5(a)). On the test

flat plate, the boundary layer was tripped using four layers of tape† cut in sawtooth
†The number of trip tape layers is determined by the height of trip strip recommended by Barlow

et al. [10] for free-stream velocity U = 30 m/s.
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Figure 4.1: Schematic of the experimental setup for acoustic spectrum measurement. The
rectangular region on the test plate is the effective rough region.

form with 0.13 mm in thickness and 1.5 mm in width. The tape was placed 4 cm from

the leading edge over the entire span of the plate. This encourages a fully developed

turbulent boundary layer close to the leading edge. A stethoscope was employed to

verify whether or not the trips induced the desired boundary layer transition. The

stethoscope was attached to an L-shaped total pressure tube, which was traversed

manually over the surface of the flat plate. Transition from a turbulent boundary

layer was observed by listening.

The leading edge of the flat plate was carefully streamlined to reduce sound

scattering effects due to flow separation at a bluff-headed nose. The rough region

was located at 0.34 m from the leading edge of the plate to satisfy the assumption

that the roughness elements are contained entirely within the boundary layer, and

to avoid the interference of sound scattering at the leading edge in subsequent noise

source localization of phased array measurements (see Section 4.3).
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4.2.1.2 Test rough panels

(a) Rough1 (b) Rough2

Figure 4.2: Test rough panels of Rough1 and Rough2 with rigid hemispherical roughness
elements formed by plastic beads.

Figure 4.1 shows that the plate surface is partially roughened in an effective

rectangular region by hemispherical roughness elements which are assumed by

the theoretical model in Chapter 3. To form the rough region, four panels each of

0.32×0.32 m2 were roughened with rigid hemispherical bosses (see Figure 4.2) flush

mounted in a recess of 0.64×0.64 m2 machined into the plate surface. The use of four

small panels instead of one large board is because a whole board of such breadth is

more likely to be cracked by structural vibration in a high-speed flow. To reduce the

flow-induced vibration, each rough panel is fastened to the recess by 5 screws, 4 at

the corners and 1 in the centre.

The rigid hemispherical roughness elements were achieved by drilling a number

of hemispherical holes in parallel columns into a modelling panel and then adhering

spherical plastic beads to the hole surfaces. Each column spans the entire height

Table 4.1: Surface conditions to be tested in the experiment.

Surface R (mm) σ Ntot

Rough1 4 0.50 1024
Rough2 3 0.44 1600
Smooth 0 0.00 0
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of the rough region. Four smooth panels were also fabricated to enable the

measurement of a smooth plate or a rough plate with a smaller roughened region.

Three different surface conditions were examined, as shown in Table 4.1. The values

of both R and σ for Rough1 and Rough2 were chosen to be comparatively high

to ensure that noise radiated from the two rough plates could be detected from

background noise and other sources. Ntot is the total number of roughness elements

per panel. Figure 4.2 shows the test rough panels of Rough1 and Rough2.

4.2.1.3 Microphones

As marked in Figure 4.1, the radiated sound from the rough plate was detected by

four 1/2” free-field condenser microphones of Brüel & Kjær (B&K) with a usable

frequency range 7 Hz – 25.6 kHz. The acoustic signals were acquired for a duration

of 60 s at a sampling frequency of 65.536 kHz. The Cartesian coordinate system

is also indicated in the schematic Figure 4.1 and the origin is chosen to be at the

centre of the rough region. The four B&K microphones were arranged in a 0.16 m×

0.16 m square array on the horizontal plane x3 = 0 and axisymmetric to the vertical

plane x1 = 0 with microphones M1 & M2 upstream and M3 & M4 downstream. To

reduce unwanted turbulence fluctuations around the microphones (wind noise), it

is important to put the microphones out of the jet boundary, and hence the distance

between the plate plane and front microphones M1 & M3 was set as 0.6 m.

Considering the dipole directivity, one may cast doubts on the validity of the

microphone positions in Figure 4.1 as they are very close to the x2-axis. It is

true that the roughness dipole sources radiate no sound at 90◦ to the plate plane.

However, the test plate is large compared to propagation distance |x|, and thus the

microphones M1–M4 were located in the far field of each roughness dipole but not

in the far field of the entire rough region. As will be discussed in Section 4.2.2, the

angle from different portions of the plate to the microphones varies significantly,

and so it is possible to measure considerable roughness noise at this location. In

addition, constraints imposed by the experimental setup (e.g. scattering at the duct

exit and reflection from the downstream wall) meant that it was difficult to alter the

microphone positions.
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4.2.2 Modifications of the numerical method

For the particular experimental setup illustrated in Figure 4.1, the numerical method

(3.47) should be accordingly modified to enable the comparison of the numerical

prediction with experimental results.

Firstly, the nonuniform directivity function D(θ, φ) for sound radiated from

different portions of the rough region should be reconsidered as the far-field

distance |x| and the dimensions of the rough area A are now comparable. In

this case the rough area A should be divided into a number of equal subareas

Aj, j = 1, . . . , NA; then one can apply the numerical integration to determine the

roughness noise radiated from each subarea, and sum their mean square pressures

to obtain the total radiation from the whole rough region. In the present setup, the

effective rough region is about 0.640 m × 0.586 m, and thus the far-field condition

|x| �
√
Aj can be satisfied if the number of subareas NA > 12 × 10 is taken. The

growing boundary-layer thickness along the plate chord is also taken into account.

Secondly, cross-spectra data were used for the measured noise spectra to discard

the interference of uncorrelated noise signals. The microphones were located

outside the flow region, but some unwanted noise (e.g. noise from the air supply)

still exists as the measurements were not performed in an anechoic chamber. The

cross-correlation technique was therefore applied to pick out radiated sound from

the rough plates. Accordingly the numerical prediction should also consider the

cross correlation between two close microphones.

We assume that the noise signals obtained by the two microphones, i.e. p(x1, t1)

and p(x2, t2) for each subarea, are well correlated, so that

p(x2, t2)|x2| = p(x1, t1 + ∆t)|x1|, (4.1)

where ∆t is the difference in observer time of two microphones,

∆t = t2 − t1 =
|x2| − |x1|

c
. (4.2)

Hence the Fourier transform of p(x1, t1) and p(x2, t2) can be related,

p̂(x2, ω) = p̂(x1, ω)
|x1|
|x2|

e−iω∆t (4.3)
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and the power spectral density becomes

〈 p̂(x1, ω) p̂∗(x2, ω)〉 = |p̂(x1, ω)|2 |x1|
|x2|

eiω∆t, (4.4)

where eiω∆t describes the difference in phase between the two microphones.

Similarly, the cross spectrum of predicted roughness noise for two microphones can

be approximated by taking the average far-field distance

|x̄| =
√
|x1||x2| (4.5)

and average directivity angles (θ̄, φ̄) in Equation (3.47).

Incorporating these two factors, the numerical method (3.47) becomes

PR(x̄, ω) =

NA∑
j=1

Ajσµ
2

4|x̄|2
R4

δ∗j
4

U2
c

c2
Φ(ω)D

(
θ̄j, φ̄j

)
eiω∆t, (4.6)

which expresses the cross spectrum of surface roughness noise radiated from a

total of NA subareas. The effects of shear-layer refraction at the jet boundary is not

considered in the modification, which will be explained in Section 4.3.2.

It should also be noted that in Figure 4.1 the rough region starts at 0.34 m from

the leading edge, whereas it is assumed in the skin friction formula (3.33) that the

surface is roughened over the whole plate. This contradiction can be removed

by a correction to the length of the rough region. As shown in Figure 4.3, the

boundary-layer thickness after the trip tape can be approximated as the turbulent

boundary layer starts from the leading edge. This boundary layer grows along the

smooth surface until it achieves a thickness δ0 at the front edge of the rough region.

δ0 can be calculated by means of the 1/9 power law for smooth walls [42],

δ0 =
0.36xle

Re
1/6
le

, (4.7)

Figure 4.3: Schematic of the rough region at a distance from the leading edge.
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where Rele = Uxle/ν is a Reynolds number based on the distance xle from the

leading edge. Another way of viewing this is that δ0 can be assumed as produced

by a hypothetical extension x0 of the rough region.

Substituting this value of δ0 into Equation (3.39) and combining Equation (3.33)

gives the correction term

x0 = ks exp

[
1

0.707

(
c
−1/2.46
f0 − 3.476

)]
, (4.8)

where cf0 is the local skin friction coefficient at xle,

cf0 = 2

[
1

κ0

ln(δ0/ks) +B +
2Π0

κ0

]−2

. (4.9)

Therefore the length scales in the skin friction formula (3.33), i.e. x1 and L, are

corrected to x1 + x0 and L + x0, respectively, for the rough region not starting from

the leading edge of the plate.

4.2.3 Results and discussion

The sound pressure spectra for the rough and smooth plates measured by the B&K

microphones are shown in Figure 4.4 and compared with the numerically predicted

roughness noise spectra using different wavenumber-frequency spectrum models.

The cross-spectra results are presented for the microphone pair, M3 & M4, because

it showed the greatest signal to noise. The experimental data were processed in

narrow band and divided by the bandwidth ∆f = 8 Hz. For the B&K microphone

system in use, the sampling frequency is 65.536 kHz = 216 Hz, the data length is

60 s and the overlap value is 2. Therefore the length of fast Fourier transform (FFT)

is 216/8 = 8192 samples, and the number of average for cross-spectra is (60 × 216 ×

2/8192)− 1 = 959.

The acoustic measurements were performed for a series of flow velocities,

U = 10, 15, . . . , 30 m/s. The free-stream velocities were measured using a Pitot

tube and a differential transducer with a resolution of 0.01 mm H2O. The surface

roughness noise scales as U6 and so it is too quiet at lower flow velocities and more

evident above the TE noise which scales as U5 at the higher velocity. Therefore the
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(a) Rough 1, R = 4 mm, σ = 0.50

(b) Rough 2, R = 3 mm, σ = 0.44

Figure 4.4: Comparison between experimental and predicted roughness noise spectra.
Smooth-wall experimental results are shown for comparison. U = 30 m/s.

experimental results discussed in this section (and Sections 4.3.3–4.3.5) are for the

velocity U = 30 m/s when differences between the acoustic data of the rough and

smooth plates are most evident.

As shown in Figure 4.4, the measured noise spectra are significantly

contaminated by facility noise. The background noise dominates at most of the

frequencies including noticeable peaks at 3 kHz which are from the driving motor
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and fan of the wind tunnel. At the low frequencies (f < 800 Hz) the dominating

noise is probably from the air supply. The predicted TE noise spectrum peaks

around 100 Hz with very low spectral levels. Since there is no difference between

the measured background noise spectra with a smooth plate and without any plate,

it is assumed that the contribution of the TE noise to the total noise spectrum is

negligible.

However, the measured noise spectra of the rough plates are still above that

of the smooth plate between 1–2.5 kHz, making the roughness noise detectable

from the noise of the smooth plate. This appears to be confirmed by the fact

that the rough-plate spectra are less fluctuating than that of the smooth plate in

this frequency range, which suggests that they contain statistically steady sources

actively radiating sound. Comparing results for the two roughness elements,

one notices that the sound from the smaller roughness element displays a lower

spectral peak, though not very distinct, by about 5 dB at a slightly higher

frequency. Beamforming source maps in Section 4.3 also confirm that the rough

plates have remarkably higher acoustic source strengthes than the smooth plate in

this frequency range. Moreover, it is shown that different wavenumber-frequency

spectrum models produce approximately the same roughness noise spectra.

The measured and predicted roughness noise spectra show a reasonable amount

of agreement. The numerical method is capable of predicting radiated roughness

noise at approximately the same absolute levels as the experimental results in

the frequency range 1–1.7 kHz, although the difference becomes notable at higher

frequencies. One possible reason for the discrepancy in f > 1.7 kHz frequency is

that the approximate Green’s function in Equation (3.5) is based on the assumption,

k0δ � 1. Take Rough1 for example, the average boundary-layer thickness over the

rough region δ̄ ∼ 2.9 cm, and thus the above assumption is not met when f =

c/2πδ̄ ∼ 1.8 kHz. Another reason could be the inaccuracy in the empirical models

of smooth-wall wavenumber-frequency spectrum. The adjustable coefficients in

these models were fixed by the authors [25, 26, 31, 43, 140] in comparison with

their experimental data. However, there is no completely satisfactory theoretical

understanding of the characteristics of the smooth-wall pressure spectrum so far.
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4.3 Phased Array Measurement

4.3.1 Introduction and survey

With the prediction model preliminarily validated through the acoustic spectrum

measurement, we apply phased microphone arrays to the experimental study to

localize the possible dipole sources in the rough region and to provide another

form of validation for the prediction model. The advantage of phased microphone

arrays lies in the improved signal-to-noise ratio, and hence noise sources below the

background tunnel noise can be identified.

Over the past decade, an increasing need has emerged for noise source

localization in acoustic measurement. Phased microphone arrays, based on

the technique of acoustic beamforming [38, 87], have been widely applied

to experimental acoustics and numerous engineering fields. The theoretical

foundation of microphone array was established by Billingsley and Kinns [16]

who constructed a one-dimensional linear microphone array for real-time jet-noise

source location on full-size jet engines. Fisher et al. [55] also measured jet noise

with two microphones using a polar correlation technique. Recent applications

of microphone arrays to jet noise were reported by Ahuja et al. [5], Narayanan et

al. [113], Hileman et al. [74], etc.

Siller et al. [134] discussed the advantages and disadvantages of a phased array

for monitoring engine core noise. More recently, Quayle et al. [125] examined the

effect of overall layout changes on landing-gear noise production at low frequencies

with two nested 48-microphone arrays. Martinez [102] used a polar-arc phased

array to locate turbofan-engine noise source components. Lan et al. [94] reported

the measurement of engine inlet noise using several advanced array systems with

different elements and testing locations. Other applications of microphone arrays

in aeroacoustics include airframe noise [68, 70, 120], aircraft flyover noise [104, 105,

121], and ground vehicle noise [11, 92].

The principle idea for microphone array processing techniques is to sum the

signals coherently at different microphones to enhance the signal emanating from
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a focal position while minimizing the contribution from out-of-focus locations [87].

A crucial step for this technique is to specify a rule, referred to as beamforming,

for appropriate summation of the microphone signals to reconstruct the spatial

distribution of noise sources [151]. For the simplest delay-and-sum beamformer, the

outputs of time-delayed signals are summed, with the delays as a function of focus

position and microphone location, to estimate the source distribution [87]. When

a source is at the focus position, the signals add to produce an enhanced signal,

whereas for out-of focus positions the signals cancel.

(a) Overview

(b) Closeup

Figure 4.5: Schematic of the experimental setup for phased array measurement.
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4.3.2 Experimental setup

The phased array measurement utilizes the same open-jet wind tunnel facility

and the test rough plates as the acoustic spectrum measurement. These facilities

have been described in Section 4.2.1 and this section will be focused on the

phased microphone array system. This array system is the same as the nested

microphone arrays installed in the CUED Markham wind tunnel, and its design

and implementation can be found in Shin et al. [132].

Figure 4.5 illustrates the experimental setup for the phased array measurement.

In the present study, a two-dimensional (2D) phased microphone array system

consisting of a high-frequency (HF) array and a low-frequency (LF) array was

used. Both arrays contain 48 microphones located on optimized concentric circles

or ellipses and flush mounted in a rigid board. As shown in Figure 4.5(a), the array

board is supported by an aluminium frame with wheels. The board plane is aligned

parallel to the test plate and the distance between them is adjustable. As the B&K

microphones in Figure 4.1, the microphone arrays were located in the far field of

each roughness element, but not in the far field of the entire rough region.

For both arrays, the 48 microphones are positioned irregularly with nonuniform

spacing. As shown in Figure 4.6, the microphones are packed more closely near

the centre of the array and are wider spaced towards the boundary. For each

microphone, d is defined as the distance to its nearest neighbour. Table 4.2 gives

the overall array dimensions and the maximum and minimum values of d for each

array. The LF array employs a wider distribution of microphones and hence has a

better resolution of source localization than the HF array at low frequencies.

Figure 4.7 illustrates the schematic of the acoustic measurement by a

phased microphone array. During a measurement the acoustic pressures were

synchronously acquired by array microphones at a sampling frequency of 120 kHz

(HF array) or 30 kHz (LF array) and a duration time of 60 s. The raw data

were transferred to the computer through the 48-channel data acquisition system

and post-processed by analysis software. Then in the beamforming of the post-

processed data, narrow-band acoustic scans were performed to determine the
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(a) HF array

(b) LF array

Figure 4.6: Microphone positions of the HF and LF arrays.

Table 4.2: Overall dimensions and the maximum and minimum values of d for each array.

Microphone array Length (m) Width (m) dmin (m) dmax (m)

HF array 0.25 0.25 0.023 0.044
LF array 1.77 0.89 0.081 0.238
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Figure 4.7: Schematic of the acoustic measurement by a phased microphone array.

source powers (see Section 7.3.1) in a given scanning grid. Finally, source maps

with sound pressure level (SPL) data were generated by summing the narrow-band

data to 1/3 octave-band data. The final data were sent to the 1.2 TB data storage

system for future reference.

In the present beamformer, the measured signals in the time domain are

transformed to complex pressures in the frequency domain by the FFT. The matrix of

cross-power spectral densities between all microphone combinations is formulated

in the frequency domain. The open-jet tunnel has some background noise and so

we remove the diagonal elements of the matrix (i.e. the auto-power) and determine

the monopole source strength at each element of the source grid that gives a best

least-square fit to the measured cross-powers. First, a scanning grid containing the

test plate is defined. The monopole source strength at each grid point is estimated

by finding the value which gives the best match between measured cross-powers

and the sound field of a simulated, unit strength monopole located at that grid

point. The beamformer uses the true distance from each source element to each

microphone.

It is also possible to obtain an estimate of source powers at each location by

using matrix inversion techniques to solve for all sources in the scanning plane

simultaneously. This approach was pioneered for phased array measurements
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by Brooks and Humphreys [20] and is referred to as a “Deconvolution Approach

for the Mapping of Acoustic Sources” (DAMAS) that gives very good solutions

for simulated, incoherent monopole sources. However, the DAMAS approach is

very computationally intensive, the computation time scaling with the square of

the number of grid points, and so its implementation is significantly beyond the

facilities available in this study.

Obviously, the advantage of an open jet is to eliminate the reverberation noise

of a closed-return wind tunnel. However, the uniform flow assumption of analysis

software is not valid in the case of out-of-flow measurements in the test section

of an open jet [133]. In this case, the effect of shear-layer refraction must be

incorporated in the source description of beamforming analysis. In fact for the

low-speed wind tunnel in use (M < 0.1), although the propagating acoustic wave

is somewhat refracted during transmission through the shear layer, the amplitude

of received acoustic pressure by array microphones is almost unaltered [38], and

hence the effect of shear-layer refraction on the predicted source strengths is

negligible. However, even a minor error in the signal phase will be amplified into

a considerable distortion of source locations. In this study, the Amiet correction [6]

for an infinitely thin shear layer was applied in the beamforming analysis for the

shear-layer correction.

4.3.3 Results and discussion

4.3.3.1 Beamforming source maps

The comparison of measured noise spectra in Figure 4.4 suggests that it would

be beneficial to focus the microphone array measurements within 1000–2500 Hz

frequency range. Figures 4.8 and 4.9 illustrate the beamforming source maps for

the rough and smooth plates obtained by the HF and LF arrays at Location 2 (see

Table 4.3). Three 1/3 octave-band frequencies are selected with centre frequencies

1250 Hz, 1600 Hz and 2000 Hz, respectively.

In the beamforming analysis, the origin of the x-y coordinates in all source maps

is fixed at the array centre. The flow direction is from the left to the right. The inner
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Figure 4.8: Measured source maps by the HF array: (a) Rough1, (b) Rough2, (c) Smooth.
U = 30 m/s.

frame outlines the boundary of the rough region and the dark line downstream

denotes the trailing edge. Note that in the current setup, only two rough panels

were mounted into the 0.64×0.64 m2 recess to form a smaller rough region upstream,

which helps reduce the interference of sound scattering from the trailing edge. In

addition, the source powers have been converted to SPL data at a reference distance

of 1/
√

4π m from the source [133]. The colour bar gives the SPL in dB, and the colour

bars for the rough and smooth plates at the same frequency are shown on identical

scales for easy comparison. The dynamic ranges of the source maps obtained by the

HF and LF arrays are about 12 dB and 16 dB, respectively.

As shown in Figures 4.8 and 4.9, the source strengths on the rough plates exceed

those on the smooth plate by about 10–15 dB. The source patterns of the two rough

plates appear very similar with higher SPL for Rough1 at frequencies of 1250 and

1600 Hz. However at f = 2000 Hz, the source strengths of Rough2 exceed those of
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Figure 4.9: Measured source maps by the LF array: (a) Rough1, (b) Rough2, (c) Smooth.
U = 30 m/s.

Rough1, which is consistent with the noise spectra data in Figure 4.4. The major

lobe of maximum source strengths occurs in the upstream portion of the rough

region. This is because the ratio of roughness height to boundary-layer thickness,

R/δ, decreases as the boundary layer grows along the plate chord, which makes the

downstream roughness elements less significant as sound scatterers.

Comparing the source maps in Figures 4.8 and 4.9, we find that the LF array

gives better resolution than the HF array due to the selected low frequencies

and the widely distributed sources in this case. The LF array is able to detect

a secondary lobe around the dark line, as can be seen in Figure 4.9, which is

principally produced by the trailing edge. The rough plates also generate stronger

TE noise than the smooth plate because on a rough plate the friction velocity uτ

and boundary-layer thickness δ are increased due to the enhanced surface drag and

turbulence production [130].
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However, we notice that the HF array measures 8–9 dB higher maximum SPL

than the LF array at all frequencies. A possible explanation is that the beamforming

algorithm assumes a monopole source with uniform directivity, and that the

locations of the array microphones are different. The microphones of the HF array

are confined in a relatively small region where considerable sound radiation can be

received from the rough region upstream, while the microphones of the LF array

are distributed in a much wider area and thus some of them are located close to the

z-axis where the roughness dipoles radiate little sound. The other and perhaps more

important reason is based on the combination of the distributed nature of roughness

sources and the difference in the resolution of both arrays. The HF array has poorer

resolution than the LF array at the chosen frequencies, and hence tends to capture

more roughness sources and add up their source levels.

4.3.3.2 Effect of array locations

Table 4.3: Locations of the array centre.

Location no. x (m) y (m) z (m)

1 0.04 0.025 0.47
2 0.18 0.025 0.64
3 0.36 0.025 0.60

The sound radiation from the two rough plates, Rough1 and Rough2, was

measured at three streamwise locations to detect some directivity features of the

dipole sources. The coordinates of the array centre for Locations 1–3 are listed in

Table 4.3 with the origin O at the centre of the rough region (see Figure 4.12). In the

x-direction, Location 1 is very close to the origin O, Location 2 is a bit downstream,

and Location 3 is further downstream and behind the rear edge of the rough region.

Location 1 is also closest to the origin O in the z-direction. In these measurements,

four rough panels were used and so the rough region is doubled in area compared

with that in Figures 4.8 and 4.9.

Figure 4.10 shows the beamforming source maps of Rough1 and Rough2

obtained by the HF array at Locations 1–3, respectively. As can be seen from



72 CHAPTER 4: EXPERIMENTAL VALIDATION

Figure 4.10: Measured source maps at Locations 1–3: (a) Rough1, (b) Rough2. HF array,
f = 2000 Hz, U = 30 m/s.

Figure 4.10, Location 1 produces a major lobe upstream with a secondary lobe

downstream. The minimum source strength lies in the middle of the rough region.

This is very close to the centre of the array and occurs because the dipoles do not

radiate sound in their normal plane. At the chosen frequency f = 2000 Hz, the

secondary lobe of Rough2 is stronger than that of Rough1 and covers a larger area,

which has been predicted by the noise spectra comparison in Figure 4.4. In contrast,

only the distributed major lobe exists in the source maps at downstream Locations 2

and 3. Higher maximum strengths can be observed as the array shifts downstream

from Location 1 to Locations 2 and 3. All these features agree with the directivity

characteristics of a distribution of dipole sources in the flow direction.

Comparing the distributed area of the major lobe at Locations 1–3, we notice

that the beamforming resolution becomes gradually worse as the array moves

farther from the origin O. However at the nearest location, least radiated roughness

noise is received by the microphone array due to the dipole directivity. Therefore,

the compromise solution is to choose an array location a bit downstream from

the central rough region, and this explains why Location 2 was used for the

measurements in Section 4.3.3.1.
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4.3.4 Theoretical simulation

4.3.4.1 Theory

In this section, the theoretical prediction model described in Equation (3.47) of

Chapter 3 is applied to calculate sound radiation from different streamwise portions

of the two rough plates in the experiments. The theoretical results are for the power

(a) Rough1

(b) Rough2

Figure 4.11: Predicted SPL of PR(ω)/A with streamwise distance x1 for chosen frequencies:
� 1250 Hz, • 1600 Hz, N 2000 Hz. U = 30 m/s.
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spectral density PR(ω) from a unit rough area to an observer at θ = π/4, φ = 0 and

|x| = 1/
√

4π m. Figure 4.11 shows the predicted SPL of PR(ω)/A distributed over the

two rough plates at 1250 Hz, 1600 Hz and 2000 Hz frequencies. At the two higher

frequencies, PR(ω)/A decreases with streamwise distance x1 from the front edge of

rough region. At 1250 Hz, there is a maximum at x1 = 0.11 m for the plate Rough1

and 0.16 m for Rough2.

On a rough plate, as the boundary layer grows along the chord (x-axis), the local

boundary-layer properties δ∗ and uτ are increasing and decreasing, respectively,

both of which are determined by x1. The overall dependence of PR(ω)/A on x1

at a particular frequency is principally due to the variation of Φ(ω) as shown in

Figure 3.3. More detailed investigation of the terms shows that the variation of

Φ(ω) accounts for the maximum of PR(ω)/A. At a frequency of 1250 Hz, Φ(ω) has a

maximum at x1 = 0.11 m for Rough1 and at x1 = 0.16 m for Rough2. At the higher

frequencies Φ(ω) decreases across the entire rough regions.

4.3.4.2 Motivation

The comparison of beamforming source maps in Section 4.3.3.1 demonstrates that

the rough plates produce distinctly stronger noise sources than the smooth plate

and enhance the TE noise somewhat. However, these “source” maps are not a

true representation of the locations and relative strengths of the roughness dipoles

because the beamforming algorithm assumes a distribution of monopole sources,

and hence can not be used directly to validate the theoretical prediction.

Jordan et al. [89] have shown that the standard beamforming technique is

inadequate for both the source location and the measurement of a simple dipole,

and that this is due to the assumption of monopole propagation in the calculation of

the phase weights used to steer the focus of the array. They developed a correction

to the beamforming algorithm to account for the dipole propagation characteristics,

and applied it to array measurements for an aeroacoustic dipole produced by a

cylinder in a cross flow. The true source location and source energy of the dipole

was then retrieved in the resulting source map after applying this correction.
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The technique of Jordan et al. [89], however, is not applicable in the case of a

distribution of dipoles because their directivities and hence the required corrections

vary over the source region, unlike the case of a single dipole. Moreover, in practice

the source mechanisms of a general aeroacoustic system could be very complex.

There might be a combination of both monopole and dipole sources, and the dipoles

may have axial and spanwise components. Therefore it would be difficult to

implement a beamformer consistent with the hypothesized type of sources.

Instead of altering the beamformer, an indirect approach is to theoretically

simulate a distribution of incoherent dipoles over a rigid plate using the prediction

model developed in this thesis, to process the predicted sound field through the

same algorithm as the experiment, and to generate predicted source maps that can

be directly compared with the experimental results. This is equivalent to comparing

theory and experiment after applying a filter which suppresses much the extraneous

noise in the experiments. It provides an indirect way of comparing all the theoretical

and experimental cross-powers between microphone pairs. For each grid point on

the source-scanning plane, we determine the monopole source strength that gives

the best fit to all the cross-powers. The quantitative agreement between the best-fit

monopoles over the source plane for the theoretical and experimental cross-powers

validates the prediction model.

4.3.4.3 Simulation overview

The theoretical simulation for an experiment using phased microphone arrays

is illustrated in Figure 4.12. A program SIMSRC was utilized to describe a

distribution of incoherent dipoles over the rigid plate and simulate the sound

detected by the microphone array, as exactly in the experimental setup. This

program requires the original source locations and source strengths as input

parameters. The post-processing and beamforming analysis of the simulation are

based on a monopole source assumption as previously mentioned, and thus are not

directly applicable to the dipole case of roughness noise. Nevertheless, SIMSRC

is able to generate cross-power data for incoherent groups of coherent monopole

sources [133]. In this case, each dipole source can be modelled by coherent pairs of
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Figure 4.12: Schematic of the theoretical simulation.

closely spaced monopoles with opposite phase. Because the rigid plate behaves as

a passive reflector, the mirror sources were also taken into account as coherent with

the original sources. The distribution of incoherent dipoles was therefore modelled

by incoherent groups of the four coherent monopole sets.

The phased microphone array is generally used to detect the source locations

and source patterns, and the SPL data shown in source maps are usually obtained as

relative and just for reference. In this study, however, we attempted to simulate the

real source strengths in magnitude as well as the source locations. The simulated

dipole sources were located at each hemispherical boss and the equivalent source

strengths were determined from the prediction model as described below. The
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simulated acoustic field was then processed in the same way as in the experiments

to obtain predicted beamforming source maps.

We now commence the determination of equivalent source strengths with the

derivation of the acoustic field of a dipole source. The mean flow effects have

been neglected since the prediction model is based on an assumption of low Mach

number which is also satisfied in the experimental setup (M < 0.1). The shear-layer

refraction has therefore not been considered in the derivation either.

4.3.4.4 Acoustic field of a dipole

The acoustic frequency spectrum for an ideal monopole in a medium without flow

can be expressed as [39]:

p̂(ω) =
−a(ω)

4πr
e−ikr, (4.10)

where a(ω) is the monopole strength in frequency domain, k = ω/c is the acoustic

wavenumber, and r is the propagation distance from source to observer.

A dipole source can be modelled as a coherent pair of closely placed monopoles

with opposite phase at a distance l apart, as shown in Figure 4.12. The acoustic field

of a dipole is obtained by combining the radiated sound of these two monopoles:

p̂(ω) =
−a(ω)

4πr+
e−ikr+ − −a(ω)

4πr−
e−ikr− , (4.11)

where r+ and r− are the propagation distances for the two monopoles with opposite

phase, 
r+ ≈ r +

l

2
cos θ,

r− ≈ r − l

2
cos θ.

(4.12)

In the far field, r � l, the amplitude difference between the radiated sound of

two monopoles is small, and thus in Equation (4.11) r+ and r− can be approximated

by r in the amplitude part. However, the phase difference can not be ignored.

Substituting Equation (4.12) into Equation (4.11), we obtain

p̂(ω) ≈ −a(ω)

4πr
e−ikr

(
e−i kl cos θ

2 − ei kl cos θ
2

)
=
−a(ω)

4πr
e−ikr

(
−2 i sin

kl cos θ

2

)
.
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If the dipole is compact (i.e. kl� 1), Equation (4.13) can be simplified as:

p̂(ω) =
a(ω)

4πr
e−ikr · ikl cos θ. (4.13)

In the presence of a reflecting rigid plate, the mirror source of the dipole need to

be included, and hence the aggregate acoustic field can be obtained by multiplying

Equation (4.13) by a factor of 2. The power spectral density of the acoustic frequency

spectrum p̂(ω) is

P (ω) = Λ(ω)

∣∣∣∣ ikl cos θ

2πr
e−ikr

∣∣∣∣2 , (4.14)

where Λ(ω) is the power spectral density of a(ω),

〈a(ω)a(ω′)〉 = 2πΛ(ω)δ(ω + ω′). (4.15)

4.3.4.5 Equivalent source strengths

As has been discussed in Section 3.4.2, the first term of the directivity function

(3.48), I1 cos2 θ, describes the sound field due to a dipole in the flow direction, while

the second term I2 sin2 θ sin2 φ accounts for a dipole in the plate plane but normal

to the flow direction. To link this to the beamforming simulation, we consider

a distribution of dipoles with two dipoles DPL1 and DPL2 at each hemispherical

boss and determine the equivalent source strengths a1(ω) and a2(ω). Herein DPL1 is

orientated in the flow direction and DPL2 is normal to the flow direction.

Now we consider a rough region of unit area which contains N roughness

elements. The acoustic field of DPL1 can be described by Equation (4.14), and hence

the aggregate power spectral density of N incoherent dipoles is

P1(ω) =
N∑

j=1

P1j(ω) =
NΛ1(ω)k2l2 cos2 θ

4π2r2
. (4.16)

From the prediction model (3.47), the contribution of the dipole DPL1 to PR(ω) for a

unit rough area A = 1 is

PR1(x, ω) =
σµ2

4|x|2
R4

δ∗4

U2
c

c2
Φ(ω)I1 cos2 θ. (4.17)

Combining Equations (4.16) and (4.17) and taking r = |x|, we obtain the theoretical

prediction for Λ1(ω):

Λ1(ω) =
π2σµ2

Nl2
R4

δ∗4

U2
c

ω2
Φ(ω)I1. (4.18)
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The above derivation is based on the continuous Fourier transform (CFT) and

Λ1(ω) denotes the power spectral density of a1(ω). However in the theoretical

simulation for acoustic measurements, the discrete Fourier transform (DFT) is

applied and thus Λ1(ω) actually means the frequency-dependent source power [39].

In this case, the equivalent source strength a1(ω) required by the simulation program

SIMSRC can not be derived directly from Λ1(ω). Instead, it is necessary to compare

the total source power in a frequency band between the CFT and DFT.

The predicted total power of Λ1(ω) in the frequency band [ω1, ωn] is

〈a2
1(t)〉 =

1

2π

∫ ωn

ω1

Λ1(ω) dω. (4.19)

In the simulation, the total power of Λ1(ω) in [ω1, ωn] can be expressed as (see

Appendix B or [58]):

Λ1tot =
n∑

i=1

|a1(ωi)|2 = n|ā1(ω)|2, (4.20)

where n is the number of frequency intervals; a1(ωi) is the equivalent source strength

in the ith frequency interval; ā1(ω) is the average source strength of n intervals,

ω1, ω2, . . . , ωn, and is used as the input source strength for the frequency band

[ω1, ωn] in SIMSRC. By equating the total source powers in the prediction (4.19)

and simulation (4.20), the predicted equivalent source strength for the two coherent

monopoles of DPL1 is given by

|ā1(ω)| = µUc

l

R2

δ∗2

[
πσI1
2Nn

∫ ωn

ω1

Φ(ω)

ω2
dω

]1/2

. (4.21)

Just as the power spectral density PR(ω), the equivalent source strength ā1(ω)

decreases with increasing streamwise position along the rough region, except at the

lowest frequency f = 1250 Hz where it has a maximum near x1 = 0.11 m for the

plate Rough1 and 0.16 m for Rough2. Equation (4.21) describes the variation of the

roughness dipole strength with streamwise locations. The value of the dipole size

l is unimportant because Λ1(ω) ∼ l−2 from Equation (4.18) and hence the predicted

power spectral density P1(ω) is independent of l. The only constraint is that l should

satisfy the compact dipole assumption kl� 1. In the present study l = R is used for

convenience.
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Similarly, the theoretical prediction for |ā2(ω)| can be obtained as:

|ā2(ω)| = µUc

l

R2

δ∗2

[
πσI2
2Nn

∫ ωn

ω1

Φ(ω)

ω2
dω

]1/2

. (4.22)

Nevertheless, the contribution of I1 to PR(ω) is more important than that of I2 for

sufficiently large roughness elements, i.e. the roughness Reynolds number Ruτ/ν >

1000. In addition, in Figure 4.12 the centre of the microphone array is located very

close to the centre of the rough region in the y-direction which is the direction of

the dipole DPL2. This results in a nearly negligible contribution of DPL2 to the SPL

of the source maps as there is no sound radiation in the normal plane of the DPL2

orientation. The predicted |ā1(ω)| and |ā2(ω)| from Equations (4.21) and (4.22) were

then used in the theoretical simulation as the equivalent source strengths for DPL1

and DPL2, respectively.

4.3.5 Comparison of measurement and simulation

To compare the source maps of measured roughness noise and simulated dipole

sources, “clean” source maps of Rough1 and Rough2 need to be obtained. Although

the reverberation noise of a closed-return wind tunnel is avoided in the case

of out-of-flow measurements in an open jet, Figures 4.8 and 4.9 still indicate

considerable contamination from other sound sources, e.g. trailing edge, leading

edge, seams. A straightforward but effective method to eliminate the contamination

is to subtract the source powers of the smooth plate from those of the rough plates.

This method was applied to the raw source maps in Figures 4.8 and 4.9, and

corrected “clean” source maps were obtained for comparison with simulation.

Figures 4.13–4.16 illustrate the comparison of measured and simulated source

maps for Rough1 and Rough2, and both the HF and LF array data are shown. Unlike

the identical colour bars for Rough1, Rough2 and Smooth in Figures 4.8 and 4.9,

the colour bars in Figures 4.13–4.16 give the unaltered maximum source strengths

for a better comparison of measurement and simulation. The simulated equivalent

source strengths at each 1/3 octave-band frequency have been averaged over the

whole bandwidth, as in the beamforming analysis of the experimental data.

In all these figures, the top row shows the “clean” source maps with the Smooth
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Figure 4.13: Comparison of source maps between measurement and simulation: (a)
measurement, (b) simulation. Rough1, HF array, U = 30 m/s.

Figure 4.14: Comparison of source maps between measurement and simulation: (a)
measurement, (b) simulation. Rough1, LF array, U = 30 m/s.
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Figure 4.15: Comparison of source maps between measurement and simulation: (a)
measurement, (b) simulation. Rough2, HF array, U = 30 m/s.

Figure 4.16: Comparison of source maps between measurement and simulation: (a)
measurement, (b) simulation. Rough2, LF array, U = 30 m/s.
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source powers subtracted. As can be seen from the HF array data in Figures 4.13

and 4.15, the SPL of the “clean” source maps has been diminished a bit and the

major lobe is concentrated more in the upstream rough region compared with the

raw source maps in Figure 4.8. This correction is shown more evidently for the LF

array data in Figures 4.14 and 4.16 in which the interference from the TE noise seen

originally in Figure 4.9 has been greatly reduced.

The bottom row of Figures 4.13–4.16 shows the corresponding source maps by

simulating a distribution of incoherent dipoles over the rigid plate with strengths

derived from the prediction model in Chapter 3. The beamforming predictions of

the source patterns of measurement and simulation exhibit satisfactory similarities,

which confirms the dipole nature of surface roughness noise. The major lobe in the

top row gradually reduces in the spanwise direction (y-axis) along the plate chord

(x-axis), whereas in the bottom row the major lobe almost fills the entire dark frame.

This is because in the experiment the boundary of the open jet expands along the

flow direction as the jet mixes with the still air in free space. The expansion effect

results in a decrease of flow velocity around the jet boundary. In the simulation,

however, this effect is too complicated to be considered for the correction of the

predicted equivalent source strengths around the jet boundary.

Furthermore, as indicated by the colour bars of Figures 4.13–4.16, the simulation

program SIMSRC is capable of approximately predicting the equivalent source

strengths of roughness noise in magnitude at 1250 Hz and 1600 Hz frequencies,

which provides further form of validation for the prediction model developed in

this thesis from the perspective of microphone array measurements. However, a

discrepancy of about 3 dB can be observed for the comparison at 2000 Hz, and

this should be ascribed to the limitation of the theoretical model which predicted

spectral levels a few dB higher than the measured roughness noise in f > 1.7 kHz

frequency, as has been discussed in Section 4.2.3. In addition, SIMSRC predicts

somewhat higher source strengths in the downstream portion of the rough region,

namely, the streamwise gradient of simulated source strengths are a bit lower

than that of the measured source strengths. Hence there is scope to improve the

theoretical model to capture these aspects of surface roughness generated noise.
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4.4 Hot-Wire Measurement

4.4.1 Experimental setup

A short experimental study using hot-wire anemometer was carried out to measure

the mean velocity profile and hence the boundary-layer thickness of turbulent

boundary-layer flow over a flat plate roughened by hemispherical bosses. The

objectives are in two counts: (i) to determine the wake strength Π0 for the

boundary-layer thickness formula (3.39); and (ii) to verify the skin friction formula

(3.33) proposed by Mills and Hang [106]. Both formulae have been described in

Section 3.3.3 and applied to the roughness noise predictions in Sections 4.2.3 and

4.3.4.

A schematic of the hot-wire experimental setup is shown in Figure 4.17. The

hot-wire measurement was performed in an open throat wind tunnel, the No. 1B

Figure 4.17: Schematic of the hot-wire experimental setup and measurement stations A–D.



4.4 HOT-WIRE MEASUREMENT 85

Tunnel, at the CUED main site. A contraction with a turbulence reduction screen

precedes the wind tunnel with a 0.72 × 0.50 m2 test section. In the approach

flow close to the tunnel floor, the mean velocity distribution resembles a typical

smooth-wall boundary-layer profile. A flat plate spanning the width of the tunnel

is placed parallel to the tunnel floor at a distance of 15 cm. The flow is tripped at

2 cm from the leading edge of the plate, and is free to pass over and under the flat

plate. The plate surface is partially roughened in a square region of 0.64 × 0.64 m2

using four rough panels with hemispherical bosses. These rough panels have been

described in Section 4.2.1.2 and both Rough1 and Rough2 are tested in this study.

The nominal depth (dn) of flow above the roughness elements is 33 cm, yielding a

low ratio of the roughness height (R = 3 or 4 mm) to the flow depth, R/dn ∼ 0.01.

A simple representation of the streamwise mean velocity (u) profile above the

plate is shown in Figure 4.17. For convenience, the boundary-layer thickness δ is

defined as the wall normal location where the streamwise mean velocity achieves

a maximum [8], i.e. u = Um. There is no region of constant mean velocity beyond

y = δ. In fact, the mean velocity decreases slightly towards the tunnel ceiling. Mean

and fluctuating velocities were measured using hot-wire anemometry with a single

probe as shown in Figure 4.18. The hot-wire probe has a tungsten sensor wire that

is 3.8 µm in diameter and 1.25 mm in length. It was operated with a DANTEC 56C

Constant Temperature Anemometer (CTA) unit. Data acquisition was done by a PC

with a National Instruments Lab PC1200 Data Acquisition board running LabView

software. The sampling frequency used is 48 kHz. The hot-wire probe was always

calibrated before each set of experiments within the free stream of the wind tunnel

Figure 4.18: The hot-wire probe above hemispherical roughness elements.
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with a compensating temperature system.

The wind tunnel was run at two different free-stream velocities of 10 and 20 m/s

measured by a Pitot tube, but only the velocity U = 20 m/s was analyzed yielding

a Reynolds number ReL = 1.25 × 106. Measurements were made in the plate

boundary layer from the top of the roughness elements at four stations denoted A–D

respectively. As shown in Figure 4.17, the distance from the leading edge of the plate

to the front edge of the rough region is xle = 135 mm, and the streamwise distances

x1 along the rough region of the four measurement stations are listed in Table 4.4

for the two types of surface roughness. Note that in the present experimental setup

xle > 0 and so the length correction x0 given in Equation (4.8) needs to be taken into

account in the predictions of boundary-layer thickness and skin friction coefficient

as discussed below.

Table 4.4: Streamwise locations of measurement stations A–D.

x1 (mm) Station

Roughness A B C D

Rough1 90 340 590 620
Rough2 96 344 592 624

4.4.2 Results and discussion

4.4.2.1 Wake strength

Figure 4.19 shows the predicted local boundary-layer thickness δ based on Equation

(3.39) for Rough1 (R = 4 mm) and Rough2 (R = 3 mm), respectively. Three tentative

values of the wake strength Π0, i.e. 0.40, 0.45 and 0.50, have been tested to find the

one suitable for the surface roughened by hemispherical bosses. The experimental

results through the hot-wire measurement at the four stations along the flat plate

are also shown for comparison.

As can be observed in Figure 4.19, the formula (3.39) with the wake strength

Π0 = 0.45 is able to give very close predictions of rough-wall boundary-layer

thickness to the measured values of δ especially at the downstream stations C and
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(a) Rough1, R = 4 mm

(b) Rough2, R = 3 mm

Figure 4.19: Comparison of the predicted and measured boundary-layer thickness δ on a
rough plate with streamwise distance xle + x1. U = 20 m/s.

D. Noticeable errors occur at upstream stations particularly Station A where the

measured data are above the predicted curve and this could be due to the effect

of the trip tape or to turbulence in the oncoming flow. Nevertheless, the mean

error should be sufficiently small to give an approximate prediction for the average

boundary-layer thickness δ̄ on a rough flat plate.
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4.4.2.2 Skin friction

From the mean velocity profiles measured at two stations along the flat plate, the

average skin friction coefficient c̄f between the two stations can be calculated. The

derivation of c̄f from the hot-wire measurement is described in Appendix C. On the

other hand, c̄f can be predicted through the skin friction formulae (3.31) and (3.33).

Here we verify the accuracy of the two different formulae proposed by Prandtl and

Schlichting [124] and Mills and Hang [106] by comparing with the c̄f derived from

the measured mean velocity profiles. The predicted average skin friction coefficient

is obtained by a numerical integration of the local skin friction coefficient cf over the

streamwise distance between two measurement stations.

Table 4.5 compares the experimental data of c̄f with the predictions using

Formulae (3.31) and (3.33). The average skin friction coefficient is examined for three

station pairs, i.e. AB, BC and AC (see Figure 4.17 and Table 4.4), and the two types

of surface roughness, Rough1 and Rough2. As can be seen in Table 4.5, the skin

Table 4.5: Comparison of the average skin friction coefficient c̄f between measurement and
predictions by Formula (3.31) (Prandtl and Schlichting [124]) and Formula (3.33)
(Mills and Hang [106]). Rough surfaces: (a) Rough1 and (b) Rough2.

(a) Prediction

Measurement Formula (3.31) Formula (3.33)

Station pair c̄f c̄f Error (%) c̄f Error (%)

AB 0.01095 0.01111 1.45 0.01384 20.90
BC 0.00865 0.00887 2.51 0.01079 19.84
AC 0.00980 0.00999 1.92 0.01232 20.44

(b) Prediction

Measurement Formula (3.31) Formula (3.33)

Station pair c̄f c̄f Error (%) c̄f Error (%)

AB 0.01069 0.01018 −4.99 0.01257 14.93
BC 0.00871 0.00824 −5.76 0.00994 12.40
AC 0.00970 0.00921 −5.33 0.01126 13.81
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friction is stronger close to the leading edge of the rough region (station pair AB).

When compared to the measured values of c̄f , the average absolute deviations for

Formula (3.31) are 20.44% (Rough1) and 13.81% (Rough2), while for Formula (3.33)

they are only 1.92% (Rough1) and 5.33% (Rough2), respectively. This confirms that

the theory underlying Formula (3.33) is in good accord with experiment. Therefore

the skin friction formula of Mills and Hang [106] is verified in accuracy and it is

reliable to apply this formula to the prediction model of surface roughness noise

developed in this thesis.

4.5 Summary

The prediction model developed in the previous chapter have been validated

experimentally in this chapter. Acoustic spectrum measurement was firstly carried

out for two rough plates in an open jet. The measured noise spectra were

significantly contaminated by background noise, but the roughness noise was

detected in 1–2.5 kHz frequency. The prediction model has been modified to be

in accordance with the experimental setup. The reasonable agreement between

measurement and prediction provides validation of the theoretical model.

Secondly, phased microphone arrays have been applied to the measurement and

simulation of surface roughness noise. From the resulting beamforming source

maps, the rough plates exhibited higher source strengths than the smooth plate,

and the TE noise was somewhat enhanced by surface roughness. Measurements

at three streamwise locations demonstrated some features of the dipole directivity.

Theoretical simulations have been performed for a distribution of incoherent

dipoles over the rough plates with the equivalent source strengths determined

by the prediction model. The same beamforming algorithm was applied to

measurement and simulation and the source maps exhibited satisfactory similarities

in source pattern with approximate source strengths. This has confirmed the

dipole nature of roughness noise and validated the source amplitude predicted

by the theory. However, the streamwise gradient of the source strengths was a

bit underestimated in the simulations, and at the highest frequency the source
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strengths were overestimated by about 3 dB, which indicates that there is scope

for an improved theoretical prediction which captures these aspects.

Finally, we performed hot-wire measurement to determine two important

parameters, wake strength and skin friction coefficient, that account for the

roughness effects of turbulence enhancement in the prediction model. The wake

strength Π0 = 0.45 has been found to enable Formula (3.39) to give the best fit to

the measured δ. The skin friction formula by Mills and Hang [106] has been verified

through comparison with the experimental data, and this formula predicts more

accurate skin friction coefficient than the formula of Prandtl and Schlichting [124].



Chapter 5

Numerical Prediction and Analysis

5.1 Introduction

CHAPTERS 3 and 4 have provided reasonable validation of the theoretical model

of surface roughness noise through comparisons of the predicted roughness

noise with the empirical model [82] and experimental results in spectral shape,

absolute spectral level, and source location and strength. On this basis, the

prediction model is employed in this chapter to investigate the effects of surface

roughness on airframe noise.

We first apply the validated prediction model in Section 5.2 to estimate the

far-field radiated roughness noise from a Boeing-757 sized aircraft wing with three

idealized levels of surface roughness. It is shown that in the high-frequency region

the sound radiated from surface roughness may exceed that from the trailing edge,

and higher OASPL is observed for the roughness noise, too. The TE noise is

also enhanced by surface roughness somewhat. A parametric study indicates that

roughness height R and roughness density σ significantly affect surface roughness

noise with roughness height having the dominant effect. The directivity pattern of

roughness noise varies with different levels of surface roughness.

In Section 5.3, we provide approximate assessment of surface roughness

noise for the full-size SAI design SAX-40 during approach. The prediction

model is utilized to estimate the radiated roughness noise from the complicated

configuration of the entire BWB surface of SAX-40. Similarly, noise assessments

91
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are performed for the three idealized test cases. A parametric study is carried out

and the effects of the two most significant parameters, R and σ, are discussed. The

enhancement of TE noise due to surface roughness is also investigated. We finally

present two candidate rough surfaces for SAX-40 to keep its roughness noise at a

negligible level and thus meet an aggressive noise target.

5.2 Boeing-757 Sized Aircraft Wing

5.2.1 Roughness noise from an aircraft wing

In this section, the far-field roughness noise generated by an aircraft wing will be

numerically predicted and compared with the corresponding TE noise. The noise

prediction is based on the approximate dimensions of the wing of a Boeing-757 sized

aircraft (see Figure 5.1), and only the underside of the aircraft wing is considered.

The evolution of the approximation of a Boeing-757 sized aircraft wing to the model

as a flat plate is illustrated in Figure 5.2. The flat plate model has been estimated

with the following dimensional parameters:

Lc ≈ 5 m, Ls ≈ 16.5 m, (5.1a)

A = Lc · Ls ≈ 82.5 m2, (5.1b)

where Lc and Ls are the equivalent chord and span, respectively, and A is the

equivalent area of the wing.

Aircraft noise is most annoying to the residents outside the airport perimeter

in a typical built-up area when the airplane is approaching or taking off from the

airport. In this case the typical Mach number M of the free stream velocity and

far-field observer may be taken as

M = U/c = 0.2, |x| = 500 m,

θ = π/4, φ = 0.
(5.2)

Note that in this direction the directivity function D(θ, φ) in Equation (3.48) is

reduced to I1/2.

Furthermore, it is necessary to evaluate the ensemble average 〈 p2(x, t)〉 of the

far-field acoustic pressure by integrating the frequency spectrum PR(x, ω) over the
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Figure 5.1: 3-view drawing of a commercial airplane type, the Boeing 757 family [19].

(a) original wing (b) two flat plates (c) one flat plate

Figure 5.2: Evolution of the approximation of a Boeing-757 sized aircraft wing to a flat plate
model. Dimensions are in metres and are estimated from Figure 5.1.

audible frequency range, f ∈
[
20 Hz, 20 kHz

]
. A-weighting [39] is also taken

into account in the integration to yield a more accurate noise prediction. Provided

that PR(x, ω) is an even function and ω = 2πf , the representation of 〈 p2(x, t)〉 in

Equation (3.19) becomes

〈p2(x, t)〉 =
1

π

∫ 4×104π

40π

10CA/10PR(x, ω) dω, (5.3)

where CA is the A-weighting factor (dBA) dependent on frequency. The curve in

Figure 5.3 shows a defined roll-off above and below the centre frequency. The

reference point is at 1 kHz, where the gain is 0 dB. However, exact values of CA
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Figure 5.3: Frequency response of the A-weighting filter for the dBA scale.

are not available for all definite frequencies; hence interpolation is used if necessary.

Finally, the SPL of the rough noise spectrum is obtained by comparing PR(x, ω)

with the reference SPL (4× 10−10 Pa2):

SPL = 10 log10

[
PR(x, ω)

4× 10−10 Pa2

]
, dB. (5.4)

Similarly, the OASPL is given by

OASPL = 10 log10

[
〈 p2(x, t)〉

4× 10−10 Pa2

]
, dBA,

f ∈
[
20 Hz, 20 kHz

]
.

(5.5)

For comparison, the corresponding TE noise was calculated based on the same

dimensions of the aircraft wing for both rough and smooth surfaces. The surface

roughness increases the friction velocity uτ and boundary layer thickness δ, as

mentioned before, and hence similar increases will be expected for the TE noise of

a rough surface. However, the smooth-wall TE noise was chosen as the comparison

reference because the surface roughness was generally not taken into account in the

traditional estimate of airframe noise, and hence its effects will be more explicit if the

roughness noise is compared with the traditionally predicted TE noise. Moreover,

to be consistent with the roughness noise prediction, the TE noise is also predicted

on the basis of an empirical model by Howe [82] using Chase’s formula [25] of wall

pressure spectrum. The directivity function in this model has been taken as 1 to

obtain the maximum sound radiation.
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5.2.2 Idealized test cases

Three idealized test cases were considered to approximately quantify the possible

roughness noise from the wing of a Boeing-757 sized aircraft:

Case 1 Rough surfaces formed by rivets, ribs, joints, etc.;

Case 2 Rough surfaces formed by environmental contamination;

Case 3 Dip-galvanized metal surfaces.

Table 5.1: Test case parameters.

Case no. R, mm σ CF uτ , m/s uτ/U δ̄, cm R/δ̄ Reτ

1 5.0 0.05 0.0060 3.72 0.055 11.28 0.0443 1272.86
2 0.5 0.85 0.0036 2.90 0.043 9.38 0.0053 99.26
3 0.152 0.85 0.0029 2.59 0.038 8.91 0.0017 26.98
4† / / 0.0027 2.52 0.037 6.07 / /

† Aerodynamically smooth surfaces; uτ/U is characterized by Howe [79].

The relative parameters of test cases 1–3 are listed in Table 5.1 with the

corresponding values of aerodynamically smooth surfaces for comparison. As

shown in Table 5.1, Cases 1 and 2 can be categorized as fully developed roughness

(Reτ > 70) and hence the skin friction formula (3.33) is applicable, while Case 3

is in fact transitional roughness (5 < Reτ < 70) in which the overall skin friction

coefficient CF is dependent on both ReL and L/ks. For convenience Equation (3.33)

is still applied to Case 3 in the calculation but it should be noted that the actual

skin friction is a bit smaller. As previously mentioned, the values of uτ and δ for

Cases 1 and 2 have been increased substantially due to the enhanced surface drag

and turbulence production. However, because of the very small roughness height,

the surface of Case 3 appears more like a smooth wall with similar parameter values.

Note that the roughness elements in these test cases are generally not perfect

hemispheres, and R herein corresponds to the equivalent roughness height. The

value of σ varies with the different rough surfaces. It is reasonable to take σ as

small as 0.05 for an aerofoil surface with a sparse distribution of rivets, ribs, joints,
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(a) Case 1, R = 5 mm, σ = 0.05

(b) Case 2, R = 0.5 mm, σ = 0.85

(c) Case 3, R = 0.152 mm, σ = 0.85

Figure 5.4: Predicted spectra of roughness noise and TE noise for Cases 1–3.
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etc., whereas for the other cases the roughness elements are assumed distributed

very densely over the aerofoil surface. Following Howe [77], the maximum value

of roughness density, σmax ∼ 0.91, occurs for a hexagonal close packing, but this

would not be representative for a purely random distribution. The value of σ for a

square close packing is σsq ∼ 0.78. Hence the mean value of σmax and σsq, ca. 0.85, is

tentatively used as the practical maximum σ in Cases 2 and 3.

The predicted roughness noise spectra in dB for the three test cases are depicted

in Figure 5.4, and compared with corresponding TE noise spectra for both rough and

smooth surfaces. Similar to Figure 3.4, different models of wavenumber-frequency

spectrum produce similar roughness noise spectra, especially around the peaks

where all these curves almost coincide with one another. As can be seen in

Figure 5.4, the smooth-wall TE noise spectra are significant only in the low-

frequency region. They always peak around very low frequencies, ca. 65 Hz, then

decay monotonically with increasing frequencies. The roughness noise spectra,

however, can be nearly ignored in the low-frequency region but achieve their peaks

at very high frequencies. This tends to confirm that surface roughness noise can

be comparable to or even more significant than the corresponding TE noise at

sufficiently high frequencies.

For Case 1, a distinct spectral peak of roughness noise occurs around 2 kHz and

is at the same approximate level as the peak of the smooth-wall TE noise. However

for Cases 2 and 3, the former becomes obviously lower than the latter due to the

diminishing size of roughness elements. Nevertheless, the roughness noise spectra

of Case 2 are still significantly above that of the TE noise spectrum in the frequency

range 3–100 kHz. In contrast, Case 3 shows significantly lower roughness noise

spectra with the maximum SPL < −20 dB. This is because the very small roughness

elements in Case 3, i.e. R = 0.152 mm, give the dip-galvanized metal surface

similar features of a smooth wall. Other possible surface finishes of an aerofoil,

e.g., camouflage paint in mass production spraying (R = 0.0305 mm) and smooth

matt paint (R = 0.0064 mm) as listed in Table 5.2, generate even quieter roughness

noise and are therefore not considered further.
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Table 5.2: Equivalent roughness heights ks for common surfaces [44].

Surface Type ks, m× 105 ks, in× 103

Aerodynamically smooth 0 0
Polished wood or metal 0.05–0.20 0.02–0.08
Natural sheet metal 0.41 0.16
Smooth matt paint, careful application 0.64 0.25
Standard camouflage paint, average application 1.02 0.40
Camouflage paint, mass production spray 3.05 1.20
Dip-galvanized metal surface 15.2 6.0
Cast iron, natural surface 25.4 10.0

Surface roughness also has important effects on the TE noise through enhanced

friction velocity uτ and boundary layer thickness δ. As observed in Figure 5.4(a),

the rough-wall TE noise is considerably increased for Case 1 with a 10.7 dB higher

spectral peak at an even lower frequency, ca. 35 Hz, than that of the smooth-wall TE

noise. However, the effects of surface roughness are not so evident in Figures 5.4(b)

and 5.4(c). The differences between the rough- and smooth-wall TE noise SPL are

only 1.0–3.4 dB for Case 2 and 0.9 dB at most for Case 3 in the whole frequency

range, 20 Hz – 200 kHz.

Attention is then confined to the audible frequency range, f ∈
[
20 Hz, 20 kHz

]
.

Table 5.3 presents the predicted roughness noise OASPL in this frequency range

and it suggests the same comparative relationship between the roughness noise and

TE noise. For Case 1, the roughness noise OASPL is higher than the smooth-wall

Table 5.3: Predicted roughness noise and TE noise OASPL for test cases 1–3.

Roughness Noise†, dBA TE Noise, dBA

Case no. 1 2 3 4 5 Smooth Rough

1 50 50 49 50 51 30 36
2 34 34 33 33 33 30 32
3 13 13 10 8 7 30 31

† Empirical models for smooth-wall pressure spectrum: 1 –
Corcos, 2 – Efimtsov, 3 – Smol’yakov and Tkachenko, 4 –
Chase I, 5 – Chase II.
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TE noise OASPL by 20 dBA in average; the rough-wall TE noise OASPL is also

enhanced by 6 dBA. Similarly, the predicted OASPL of Case 2 shows a much smaller

difference of 3–4 dBA between the roughness noise and smooth-wall TE noise, and

the surface roughness increases the TE noise OASPL by only 2 dBA. In Case 3,

however, the OASPL of roughness noise decreases greatly due to the very small

roughness height, and becomes 17–23 dBA lower than that of the TE noise. For the

same reason the difference between the rough- and smooth-wall TE noise OASPL is

merely 1 dBA. These features tend to support the speculation that surface roughness

generated noise would contribute substantially to the airframe noise of a “clean”

configuration and the TE noise would be enhanced by surface roughness to some

extent provided that the roughness elements are not too small in size.

5.2.3 Parametric study

A parametric study was carried out to investigate the effects of two important

parameters, roughness height R and roughness density σ, on the roughness noise

from a Boeing-757 sized aircraft wing†. In Figure 5.5(a), the roughness noise spectra

for different values of R are compared in a wide frequency range, 20 Hz – 200 kHz,

with the value of σ fixed to 0.85. As R decreases from 5.0 mm the spectral peak

decreases and shifts to progressively higher frequencies until R = 0.1 mm, where

there is no evident peak for R 6 0.1 mm. In addition, Figure 5.5(a) implies that

the peak frequency of the roughness noise spectrum is approximately proportional

to R−1. Below the peak frequency, the approximate parametric dependency SPL ∼

(ωR)4 can be observed.

The dependence of roughness noise OASPL on roughness height R for various

values of σ is depicted in Figure 5.6(a). It is shown that the parameter R has

significant effects on the roughness noise OASPL. For R < 1 mm, the OASPL varies

as Rε, where 3.2 < ε < 4.3 dependent on the value of σ; while for larger values of R,

the OASPL increases less rapidly with increasing roughness height.

Roughness density σ is another important parameter for the roughness noise.

†Hereafter for simplicity the numerical integration is based on the Smol’yakov and Tkachenko
model only as all wall pressure models give very similar plots.
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(a) Effect of R, σ = 0.85

(b) Effect of σ, R = 5.0 mm

Figure 5.5: Effects of roughness height R and roughness density σ on predicted roughness
noise spectra.

The roughness noise spectra for R = 5.0 mm and different values of σ are compared

in Figure 5.5(b). As σ increases from 0.05 the spectral peak shifts to progressively

higher frequencies with increasing SPL, though not as obviously as the variation

withR in Figure 5.5(a). This implies that the spectral peak of roughness noise is also

related to the distribution of roughness elements. A denser distribution results in

the higher peak SPL and peak frequency because there are more roughness elements
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(a) OASPL vs. R

(b) OASPL vs. σ

Figure 5.6: Effects of roughness height R and roughness density σ on predicted roughness
noise OASPL.

interacting with turbulence near field and scattering sound.

Figure 5.6 shows the dependence of roughness noise OASPL on roughness

density σ. As observed in Figure 5.6(a), larger values of σ usually generate louder

roughness noise for large roughness elements (R > 2.0 mm). The OASPL variation

in Figure 5.6(b) also shows that at low values of σ the mean square pressure scales

approximately on σ. However, it is not always the case. In Figure 5.6(b) for R 6
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1.0 mm, the roughness noise OASPL increases slowly with σ, attains a maximum

at σp, and then decreases. The peak value σp shifts, as R increases, to a larger

value of σ with higher OASPL. This is because for larger values of σ than σp the

wall appears gradually “smoother” as roughness elements become progressively

compacter. But this effect will be counteracted to some extent by larger roughness

height (R > 2.0 mm) because the absolute space among the roughness elements

increases with R even for a very dense distribution.

Nevertheless, the effect of roughness density σ on roughness noise prediction

is not as significant as that of roughness height R due to the different OASPL

dependencies on R and σ. For instance, the OASPL variation in Figure 5.6(b) is

at most 17.4 dBA from σ = 0.01 to 1.0 for the case R = 5.0 mm, although such

a large roughness density of 1.0 is not achievable in practice, which is greatly less

than the OASPL increase of at least 40 dBA (σ = 0.05) from R = 0.1 mm to 5.0 mm in

Figure 5.6(a).

5.2.4 Directivity

In previous roughness noise predictions the far-field observer is fixed at |x| =

500 m, θ = π/4, φ = 0, and the directivity function D(θ, φ) is therefore reduced

to I1/2. However, the roughness noise radiation will vary in different directions as

described in Equation (3.48). The first term I1 cos2 θ describes the effect of a dipole

in the flow direction. The contribution of the term I2 sin2 θ sin2 φ to D(θ, φ) should be

taken into account when φ 6= 0, and it accounts for the sound from a dipole in the

plane of the wing but normal to the flow direction.

The directivities of roughness noise OASPL in the plane of a Boeing-757 sized

aircraft wing (i.e. θ ∈ [0, π] and |φ| = π/2) were predicted for the three idealized test

cases, as shown in Figure 5.7. It can be seen from Equation (3.48) that the roughness

noise OASPL is symmetrical to θ = π/2 (I3 ≡ 0). In addition, Case 1 indicates that

the radiated roughness noise is 7 dBA higher in θ = 0, π than in θ = π/2 (I1 > I2),

while for Cases 2 and 3 the maximum sound occurs in the direction θ = π/2 (I1 < I2).

We can understand this by looking at the variation of the integrands in Equation



5.2 BOEING-757 SIZED AIRCRAFT WING 103

Figure 5.7: Predicted directivities of roughness noise OASPL for Cases 1–3, |x| = 500 m,
φ = −π/2.

Figure 5.8: J , as defined in Equation (5.6), as a function of κ and α.

(3.49) with κ and α. Figure 5.8 is a plot of the integral,

J =

∫ 4×104π

40π

10CA/10|γ(κ)|2Φ̃p(κ, ω)κ dω, (5.6)

as a function of α for different values of κ. J is a component of Equation (5.3) and

needs to be multiplied by

(cos2 α, sin2 α)Ψ(κ)e−2κRδ∗3 (5.7)

and integrated over κδ∗ and α to give
∫

10CA/10(I1, I2) dω which leads to the

roughness noise OASPL. As shown in Figure 5.8, the variation of J with the

wavenumber direction α changes as κ increases with the maximum strength moving

towards α = π/2. The exponential factor e−2κR means that the OASPL directivity
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(a) Case 1, R = 5 mm, σ = 0.05

(b) Case 2, R = 0.5 mm, σ = 0.85

(c) Case 3, R = 0.152 mm, σ = 0.85

Figure 5.9: Predicted ground contours of roughness noise OASPL for Cases 1–3.
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is predominantly influenced by small κ for large roughness height, while a wider

range of κ is important for small R. This explains the observed difference in

the predicted directivities for different roughness levels of surface roughness in

Figures 5.7 and 5.9.

In Figure 5.9 the predicted contours of roughness noise OASPL on the ground

are depicted in the x1-x3 coordinates for test cases 1–3 to investigate the radiated

roughness noise which can be heard by the people outside the airport perimeter in a

typical built-up area. Suppose that an aircraft right above the origin (0, 0) at a height

H = 100 m is approaching or taking off from the airport in the positive x1-direction

with a Mach number M = 0.2. In this case the roughness noise radiated from the

aircraft wing to the ground should vary with the observer direction (θ, φ), and the

far-field distance |x| of an observer on the ground is also a function of (θ, φ), i.e.,

|x| = H/ sin θ cosφ.

As can be seen in Figure 5.9, the predicted ground contours are illustrated in

a 400 × 400 m2 square region, and exhibit symmetries to both x1- and x3-axes

as explained above. The contours are not shown in a central circular region

of radius 5 m because for an observer at (0, 0) the observer vector x is in the

direction perpendicular to both dipoles described by I1 and I2, namely, 〈p2(x, t)〉 →

0, OASPL → −∞ when θ → π/2, φ → 0. Therefore the roughness noise OASPL

drops abruptly as the observer approaches the origin and the lowest OASPL is

observed at positions right underneath the aircraft for all test cases.

However, the highest OASPL occurs on the x1-axis for Case 1 (I1 > I2) and

on the x3-axis for Cases 2 and 3 (I1 < I2), which is consistent with the features

of the predicted directivities in Figure 5.7. Note that the highest OASPL is always

positioned at a distance H from the origin (0, 0). This is because on these axes the

far-field distance |x| and directivity function D(θ, φ) are reduced and the acoustic

Table 5.4: Reduced forms of expressions for observers on the x1- and x3-axis.

Observer θ |φ| |x| D(θ, φ) PR(x, ω) OASPLmax

on x1-axis (0, π) 0 H/ sin θ I1 cos2 θ ∝ sin2 2θ θ = π/4, 3π/4
on x3-axis π/2 [0, π/2) H/ cosφ I2 sin2 φ ∝ sin2 2φ φ = π/4,−π/4
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frequency spectrum PR(x, ω) becomes proportional to sin2 2θ or sin2 2φ, as shown in

Table 5.4, which gives the maximum OASPL in θ = π/4, 3π/4 on the x1-axis or in

φ = π/4, −π/4 on the x3-axis.

5.3 SAI Design SAX-40

5.3.1 Methodology

Following the roughness noise estimates for the Boeing-757 sized aircraft wing,

we carry out similar assessment of surface roughness noise for the Silent Aircraft

conceptual design SAX-40. In this work, the integral bounds
[
20 Hz, 20 kHz

]
in

Equation (5.3) is replaced by the frequency band
[
50 Hz, 10 kHz

]
to be consistent

(a) Original model

(b) Spanwise division (c) Streamwise division

Figure 5.10: Evolution of the approximation of the SAX-40 planform.
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with the estimation of other noise components of SAX-40 [32, 72]. This frequency

band is typically used for noise analysis because frequencies below 50 Hz and above

10 kHz are barely perceived by humans and can be safely ignored when calculating

A-weighted OASPL.

5.3.1.1 Approximation of SAX-40 planform

To apply the prediction model to the SAI conceptual design, the original BWB

surface of SAX-40 as shown in Figure 5.10(a) is firstly approximated as a rigid

flat plate and differences in the vertical z-direction are ignored in the planform.

Roughness elements are assumed to be uniformly distributed over the whole

plate. The planform is then divided spanwisely (increment ∆y < 5.5 m) into

a series of subareas, as shown in Figure 5.10(b), which is able to reproduce the

main characteristics of the original geometry of SAX-40. The coordinates of the

approximated leading edge points and the chord are listed in Table 5.5.

Moreover, to consider the effect of the decreasing ratio R/δ along the plate

Table 5.5: Approximate configuration of the SAX-40 planform.

Leading edge points

y‡, m x†, m Chord, m

Centreline 0.0000 0.0000 41.0000
1.8288 1.4000 39.3000
5.4864 13.3000 26.5000
9.1440 19.5000 16.7000

12.8016 22.6468 8.4365
17.2847 24.7541 6.3292
21.7678 26.8613 5.2579
26.2510 28.9686 4.1866
31.6141 31.4896 2.9050

Wing tip 32.8000 32.8287 2.6451

Winglet tip 33.7736 36.1287 1.8000

† x is longitudinal, positive towards the back of
the aircraft.

‡ y is lateral, positive to the left.
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chord (x-direction), the subareas in Figure 5.10(b) are approximated as rectangles

and divided sreamwisely (increment ∆x < 3.5 m) into a number of rectangular

panels shown in Figure 5.10(c). The panel dimensions ∆x × ∆y are sufficiently

small to ensure that the far-field condition |x| � ∆x,∆y is satisfied. For each panel,

streamwisely averaged values of the local boundary-layer properties δ and uτ on

a rough plate are determined through the empirical formulae (3.33) and (3.39) in

Section 3.3.3. The total roughness noise radiation from the whole SAX-40 surface is

therefore obtained by adding up the sound power radiated from each panel.

5.3.1.2 Approach configuration

Because surface roughness noise is a dipole-type source [77–79, 81], the OASPL has

an intensity proportional to the 6th power of flow velocity, i.e. 〈p2(x, t)〉 ∼ U6.

Therefore lower approach speeds and/or clean configurations can significantly

reduce the noise of approaching aircraft. The Silent Aircraft design utilizes an

all-lifting body with large surface area, which potentially leads to an estimated

approach speed of 60.8 m/s, a 28% reduction as compared to current aircraft of

similar size [72].

The OASPL of surface roughness noise is logarithmically proportional to 1/|x|2.

Steeper approach angles thereby reduce noise by keeping aircraft at higher altitudes

at a given distance from touchdown. In addition, displacing the landing point

further down the runway also increases the altitude of the aircraft when crossing

the airport perimeter [72]. Therefore a slightly steeper approach path angle α = 3.9◦

and a threshold displacement of 1.2 km are utilized to increase the distance between

Figure 5.11: Hypothetical airport dimensions used for the noise assessment of SAX-40
during approach.
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the aircraft and the ground during the approach phase of flight. As shown in

Figure 5.11, the displaced landing point is then 2.2 km away from the airport

perimeter for our hypothetical airport. These changes lead to an aircraft altitude

H ≈ 150 m at the airport perimeter which is increased by 97.5 m compared to a

conventional 3◦ non-displaced approach [72].

5.3.2 Noise assessment

5.3.2.1 Idealized test cases

Following the test cases in Section 5.2.2, we consider three hypothetical rough

surfaces with idealized roughness levels (see Table 5.1) to preliminarily estimate the

noise impact due to surface roughness of an approaching SAX-40. Note that in these

test cases, Case 1 is actually a sparse distribution of very large roughness elements

with an overestimated value of roughness density σ = 0.05, while Cases 2 and 3

consist of small roughness elements densely distributed over the whole surface.

The predicted ground contours of roughness noise OASPL as the aircraft passes

the airport perimeter are illustrated in Figure 5.12 for the three test cases. The

dashed line in the ground noise footprint shows the airport perimeter, while the

solid black line represents the aircraft flight path. As shown in Figure 5.12, Case 1

generates a loud noise level (maximum OASPL > 61 dBA), whereas the noise level

of Case 2 is acceptably quiet and the maximum OASPL is lower than that of Case 1

by about 12 dBA. For Case 3, the noise level is even quieter (maximum OASPL

decreased by almost 28 dBA compared to Case 1) and the noise impact is negligible.

Moreover, the ground contours of Cases 1–3 are predicted symmetrical to both

eastward (i.e. aligned with the runway) and northward (direction normal to the

runway) axes. This is because the prediction model is based on low Mach number

assumption [77] and thus the flow effects have been neglected in the acoustic

intensity as the approach Mach number (M ∼ 0.18) is sufficiently low. In addition,

the maximum OASPL occurs on the eastward axis for Case 1 but on the northward

axis for Cases 2 and 3, and is always positioned at a distance of H from the origin

(0, 0). However, the minimum OASPL is observed right underneath the aircraft
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(a) Case 1, R = 5 mm, σ = 0.05

(b) Case 2, R = 0.5 mm, σ = 0.85

(c) Case 3, R = 0.152 mm, σ = 0.85

Figure 5.12: Predicted ground contours of roughness noise OASPL for Cases 1–3 of SAX-40.

for all test cases. These characteristics can be ascribed to the dipole directivity of

surface roughness noise which have been discussed in Section 5.2.4. Because of the

widely distributed SAX-40 planform compared to the aircraft height, the observer’s

directivity varies over the planform and so the minimum OASPL at the origin (0, 0)

is not −∞ as expected for a “small” rough region.

5.3.2.2 Parametric study

The effects of two dominant parameters, roughness height R and roughness density

σ, on the roughness noise estimate of SAX-40 during approach are illustrated in
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Figure 5.13: Effects of R and σ on roughness noise OASPL of SAX-40 during approach.
Maximum OASPL on the eastward axis at (H, 0).

Figure 5.14: Effects of R and σ on roughness noise OASPL of SAX-40 during approach.
Maximum OASPL on both northward and eastward axes at (H, 0) or (0,H).

Figures 5.13 and 5.14. Figure 5.13 shows the variation of the maximum OASPL on

the eastward axis fixed at (H, 0) with both R and σ, while Figure 5.14 is for the

overall maximum OASPL on both northward and eastward axes located at (H, 0) or

(0, H). As can be observed in Figure 5.13, the roughness noise OASPL is significantly

influenced by roughness height R and always increases monotonically with R. Take

σ = 0.01 for example, as R increases from 0.1 mm, the roughness noise OASPL

increases rapidly from 16.7 dBA to 50.5 dBA at R = 1.5 mm, and then begins to level

off until it approaches 55.2 dBA for very large roughness heights (R > 5 mm).
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Roughness density σ is another important parameter but with different effects on

roughness noise OASPL. For large values of R, the OASPL increases monotonically

with σ, too, and a rapid increase occurs between σ = 0.01 and 0.15. However for

R 6 0.8 mm, the variation of OASPL with σ achieves a maximum at a peak value

of roughness density, σp, because when σ > σp the wall appears “smoother” as the

distribution of roughness elements becomes gradually denser.

All these features of the dependence of the roughness noise OASPL at a fixed

position on R and σ are consistent with those for a Boeing-757 sized wing in

Section 5.2.3. Figure 5.14 shows similar characteristics for the overall maximum

OASPL on both northward and eastward axes, but there is no evident peak in the

variation of OASPL with σ for a fixed value of R. Furthermore, the OASPL surface,

as shown in Figures 5.13 and 5.14 on the left, appears very flat at large values of

R and σ, while it varies rapidly when either R or σ is small, and it is evident that

roughness height R has more dominant effects than roughness density σ due to the

much steeper OASPL surface at small roughness height (R < 1.5 mm).

5.3.2.3 Source distribution

Calculation is performed for the distribution of roughness noise sources on the

SAX-40 surface. Figure 5.15(a) depicts the 42 × 67 grid for calculation. At each

grid point, the sound radiation is calculated for a reference area of

Aref =
Agro

(42− 1)× (67− 1)
≈ 0.31 m2, (5.8)

where Agro is the gross area of the SAX-40 planform (Agro ≈ 836.0 m2) and the source

powers are converted to OASPL data at a reference position (H, 0) on the ground.

The three idealized test cases as described in Section 5.3.2.1 are investigated.

Figures 5.15(b)–5.15(d) illustrate the relative source distribution for these three

cases. It is evident that the source strengths decrease along the chord (x-direction)

for all cases with maximum source strengths at the leading edge. As described

in Equation (3.47), in addition to the explicit dependence of PR(x, ω) on δ∗−4,

the local boundary-layer properties uτ and δ∗ also influence Φ(ω) and D(θ, φ)

implicitly. On a rough plate, the boundary layer is growing along the chord, and
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(a) Calculation grid (b) Case 1, R = 5 mm, σ = 0.05

(c) Case 2, R = 0.5 mm, σ = 0.85 (d) Case 3, R = 0.152 mm, σ = 0.85

Figure 5.15: Distribution of roughness noise sources (dBA) on the SAX-40 surface.

the boundary-layer profile is determined by both x and R. The overall dependence

of PR(x, ω) on x leads to a decreasing distribution of source strengths from upstream

to downstream which has been observed in the beamforming source maps of phased

array measurements (see Section 4.3). This also implies that the roughness elements

on the SAX-40 surface, if possible, should be distributed in downstream region to

achieve lower noise sources due to surface roughness.

Comparing Cases 1–3, we see that the source strengths vary gradually from

14 dBA to 32 dBA in Figure 5.15(b), while for Cases 2 and 3 the source distributions

appear very similar. As shown in Figures 5.15(c) and 5.15(d), the source strengths

are decreasing much more drastically over a range of 36 dBA and 30 dBA,

respectively, and the strong sources (red region) are more concentrated around the
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leading edge compared to those of Case 1. The maximum source strength drops

rapidly as the size of roughness elements decreases from Case 1 to Cases 2 and 3

despite the increasing roughness density. This indicates that roughness height R

has more effects on surface roughness noise than roughness density σ, which is

consistent with the results discussed in Section 5.3.2.2.

5.3.2.4 Effect on TE noise

Surface roughness also affects the TE noise through changed boundary-layer

properties due to enhanced surface drag and turbulence production [130]. In the

numerical prediction for a Boeing-757 sized aircraft wing, the spectral level of TE

noise was found to be increased to some extent by surface roughness. Stronger

source strengths of TE noise have been observed on a rough plate than a smooth

plate in the phased array measurements (see Section 4.3). In this section the

effect of surface roughness on TE noise is studied with the same parameters as

in Section 5.3.2.1. The empirical model presented by Howe [82] is used to predict

the TE noise from SAX-40. The same three idealized roughness cases are studied

together with a fourth case of an aerodynamically smooth surface for comparison

(see Table 5.1).

Figure 5.16 illustrates the predicted ground contours of TE noise OASPL for

test cases 1–4 and should be compared with the corresponding roughness noise

estimates in Figure 5.12. As observed in Figure 5.16, the maximum TE noise OASPL

in all cases occurs around (75, 0) m, and it shows the level of about 39 dBA for the

smooth-wall TE noise in Figure 5.16(d). The maximum OASPL of the rough-wall TE

noise is enhanced by 4.5 dBA for Case 1. Similarly in Figure 5.16(b), Case 2 surface

roughness increases the maximum OASPL by almost 2 dBA. However for Case 3,

the difference between the rough- and smooth-wall maximum OASPL is at most

0.5 dBA due to the very small roughness height which makes Case 3 demonstrate

similar features to a smooth surface.

The enhanced TE noise on a rough surface is due to the increased boundary-layer

properties as aforementioned. Figure 5.17 shows the comparison of displacement
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(a) Case 1, R = 5 mm, σ = 0.05

(b) Case 2, R = 0.5 mm, σ = 0.85

(c) Case 3, R = 0.152 mm, σ = 0.85

(d) Case 4, aerodynamically smooth

Figure 5.16: Predicted ground contours of TE noise OASPL for Cases 1–4.
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Figure 5.17: Comparison of displacement boundary-layer thickness δ∗ at the trailing edge of
SAX-40 planform along lateral coordinate y.

boundary-layer thickness δ∗ at the trailing edge of SAX-40 planform along lateral

coordinate y for Cases 1–4. The determination of boundary-layer thickness on a

rough wall has been given in Equation (3.39), and δ on a smooth surface is calculated

by means of the 1/9 power law [42]. From Figure 5.17 we see that δ∗ decays along

y due to the decreasing chord length as summarised in Table 5.5. At a fixed y, δ∗

is considerably increased for Case 1, whereas for Case 2 the differences between

the rough- and smooth-wall δ∗ are not so evident especially when y > 12.8 m. For

Case 3, the y-δ∗ curve almost coincides with that of the smooth wall.

5.3.3 Candidate surface roughness

5.3.3.1 Noise target

SAI has a maximum noise target of 63 dBA outside the airport perimeter for the

sum of all noise components, such as the noise from fan, jet, airfoil, undercarriage,

etc. As SAX-40 is a conceptual design, details of the material for the BWB surface

are not available. Instead, we aim to find the maximum allowable roughness for the

SAX-40 surface if it is to meet the given noise target. To keep surface roughness as

a negligible contributor to the overall noise, a target of 50 dBA has been set for the

roughness noise radiated from the SAX-40 surface to the ground.



5.3 SAI DESIGN SAX-40 117

Two categories of surface roughness which are common for current aircraft

wings and fuselage are considered:

• Category 1:

Roughness due to large but sparsely distributed bosses, e.g. joints, seams,

bugs, tentative roughness density σ = 0.01;

• Category 2:

Roughness densely distributed over the entire BWB surface due to material or

contamination, practical maximum density σ = 0.85 [77];

and thus the unknowns become the maximum roughness heights for these two

categories that meet the 50 dBA target.

5.3.3.2 Propagation effects

The parametric effects on surface roughness noise have been displayed in

Figure 5.14 in which the overall maximum OASPL on the ground should be referred

to regarding the 50 dBA noise target. As can be found in Figure 5.14, roughness

densities of 0.01 and 0.85 correspond to the roughness heights of 1.4 mm and

0.4 mm along the 50 dBA contour line, which gives a preliminary estimate about

the candidate roughness heights for the two categories of rough surfaces.

However in real cases, more effects need to be taken into account when

acoustic energy is propagated from the source to the ground. In this work, we

applied the techniques described by Evans [47] to propagate the resultant source

noise to the ground. These techniques assume spherical spreading, atmospheric

attenuation [45] and lateral attenuation [46] within a still, uniform medium, and

attenuation/amplification of acoustic energy due to incidence onto a grassy surface.

A +3 dB correction was made for ground reflection [72]. Therefore the maximum

values of R could possibly be higher than 1.4 mm and 0.4 mm for Categories 1 and

2, respectively, when all propagation effects were included.
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(a) Candidate 1, R = 2 mm, σ = 0.01 (b) Candidate 2, R = 0.5 mm, σ = 0.85

Figure 5.18: Ground noise footprints (dBA) for two candidate rough surfaces: top, ground
contour; middle, noise level at flyover; bottom, noise level along sideline.

5.3.3.3 Results and discussion

Two candidate rough surfaces have been selected and the ground noise footprints

as the aircraft passes the airport perimeter are shown in Figure 5.18. As evident

from Figure 5.18, the maximum OASPL is below 50 dBA for both candidate rough

surfaces. The ground contours around the aircraft are decaying much more rapidly

than those in Figure 5.12, and this should be attributed to the propagation effects.

For Candidate 1, the maximum OASPL of 49 dBA in the centerline is close to the

maximum allowable roughness noise OASPL. However, the tentative value σ = 0.01

is a conservative estimate for the surface roughness of Category 1. The gross area

of SAX-40 is 836.0 m2, and thus a roughness density of 0.01 results in a fractional
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area of 8.36 m2 fully covered by roughness elements, which is unlikely in practice.

In fact, the large roughness bosses due to joints are distributed very sparsely over

the aircraft surface, and the adhered bugs are even more sparse.

For Candidate 2, the maximum OASPL in the sideline is below 45 dBA, which

makes roughness noise negligible to the aggregate aircraft noise. Furthermore,

R = 0.5 mm is also a conservative estimate for the surface roughness of Category 2.

For current airliners, natural sheet metal (R = 0.0041 mm) [44], for example, is a

commonly used material for the fuselage. Even for the worst case, smooth matt

paint with careful application (R = 0.0064 mm) [44], the roughness height is still

greatly less than 0.5 mm. Therefore the noise impacts due to the surface roughness

of Category 2 can be ignored as the composite material (possibly forming SAX-40)

should be even smoother.

5.4 Summary

In this chapter, the validated theoretical model of surface roughness noise has been

applied to numerical prediction to assess the contribution of surface roughness to

airframe noise. Approximate estimates of the far-field radiated roughness noise

were obtained in sequence for a Boeing-757 sized aircraft wing and then the SAI

conceptual design SAX-40.

In the first case of the aircraft wing, the absolute levels of roughness noise SPL

and OASPL for three idealized test cases have been approximately quantified. It

has been shown that TE noise is only significant at very low frequencies, while

roughness noise turns out to be the dominant noise of a “clean” airframe in the

high frequency region. The spectral level of roughness noise exceeds that of TE

noise at sufficiently high frequencies, and corresponding differences in OASPL can

be observed, too. Another indirect effect of surface roughness on airframe noise is

accounted for by the somewhat enhanced TE noise.

The subsequent parametric study has indicated that both roughness height R

and roughness density σ have significant effects on roughness noise in which

roughness height affects the roughness noise more significantly. In addition the
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directivity study has shown that the roughness noise OASPL is symmetrical to both

x1- and x3-axes. The lowest OASPL has been observed right underneath the aircraft,

and the highest OASPL occurs on the x1-axis for Case 1 and on the x3-axis for Cases 2

and 3 at the same distance from the origin as the aircraft height. In conclusion, the

significant contribution of surface roughness to airframe noise needs to be carefully

considered in the design of a low-noise airframe.

In the next application, surface roughness noise has been assessed for the Silent

Aircraft conceptual design SAX-40. The three idealized test cases were estimated

and the resulting ground contours demonstrated that significant levels of surface

roughness noise could be produced from the SAX-40 surface. The parametric study

indicated that both R and σ have significant effects on surface roughness noise with

R a more dominant parameter. The roughness noise sources on the SAX-40 surface

were found to be most significant at the leading edge and to decrease downstream

due to the influence of the growing boundary layer along the chord. The TE noise

was also somewhat enhanced by surface roughness. Candidate rough surfaces of

two common categories have been selected for SAX-40 which are able to meet the

50 dBA noise target set for surface roughness noise. Therefore provided the surface

finish meets these requirements surface roughness noise would not prevent SAX-40

from meeting the overall noise target.



Chapter 6

Drag Dipole Mechanism

6.1 Introduction and Survey

THE surface roughness noise due to near-field hydrodynamic pressure

fluctuations in the turbulent boundary layer being scattered into sound has

been theoretically formulated, experimentally validated and numerically predicted

in Chapters 3–5. In this chapter we will focus on the alternative source mechanism,

the drag dipole mechanism, and extend it to consider noise produced by fluctuating

surface pressures on very large roughness elements. To determine the unsteady

drag on the bluff-body-type hemispherical elements, we apply an analytical sphere

model proposed by Howe et al. [83] (2001) and modify it to adapt to a wall-mounted

hemisphere. We now commence with a brief survey on the relevant work of

unsteady forces on a sphere and of hairpin vortices.

6.1.1 Lift and drag fluctuations of a sphere

A non-spinning sphere in a high-Reynolds-number, incompressible and nominally

steady flow is subject to unsteady lift† and drag. Willmarth and Enlow [159],

Achenbach [3] and Taneda [144] have suggested that the fluctuating force is caused

by the asymmetric shedding of large turbulent eddies into the wake which produces

an unsteady bound vorticity vector. Numerous researchers have studied the

†The side component of the fluctuating force on a sphere has no preferred orientation in a plane
normal to the free-stream direction, but nonetheless it is usually referred to as the unsteady lift.

121
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vortex shedding characteristics due to uniform flow past spheres (Möller [110],

Achenbach [2, 3], Sakamoto and Haniu [128], Taneda [143, 144], Willmarth and

Enlow [159], etc.). It has been discovered that vortex shedding from a sphere at

large Reynolds numbers occurs predominantly at a Strouhal number fD/U ≈ 0.2,

where D is the diameter of the sphere and U is the undisturbed stream velocity.

The spectrum of the unsteady lift is generally very broadband. Willmarth and

Enlow [159] reported measurements of the lift for a sphere in air, whose spectrum

exhibits smoothly varying behaviour at Strouhal numbers 6 0.3 in the supercritical

range 4.84× 105 6 Re 6 1.67× 106.

There have been limited publications on measurements of the spectrum of the

unsteady drag on a sphere and its magnitude relative to the lift. According to the

numerical simulations at Re < 1000 by Johnson and Patel [88], Mittal [107] and

Tomboulides and Orszag [148], the wake becomes asymmetric when Re exceeds

350–450 and the drag at these Reynolds numbers is five or six times larger than

the lift. However, Zierke [162] carried out a numerical study and showed that the

time-dependent drag experienced by a freely falling sphere at Re = 1000 is an order

of magnitude smaller than the lift. The experiments by Howe et al. [83] indicate

that this is also true at higher Reynolds numbers, at least for Re as large as about

17000. This is consistent with the corresponding results for a cylinder in a cross flow

(Goldstein [62], Phillips [119]) where the root-mean-square lift is also an order of

magnitude larger than that of the drag [156].

Willmarth and Enlow [159] have observed that the large fluctuating forces on

the sphere are strongly correlated with fluctuations in the bound vorticity in the

meridian plane normal to the force, and they conjectured that these fluctuations

in bound vorticity arise from the shedding of large-scale coherent structures into

the wake, even at supercritical Reynolds numbers (Re > 3.7 × 105). The general

characteristics of the wake have been summarized by Sakamoto and Haniu [128]

for subcritical, low and intermediate Reynolds number. In particular, hairpin-type

vortices are found in the wake when 300 < Re < 420. When Re exceeds 800

large-scale vortex loops were observed to move away from the sphere, rotating

at random about an axis parallel to the flow through the centre of the sphere.
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The Strouhal frequency of coherent shedding increases with Reynolds number and

approaches the constant ∼ 0.19 at Re ∼ 20000. Flow visualizations by Taneda [144]

at Re = 3.5 × 105 revealed that the large-scale structure of the wake is asymmetric

and contains a sequence of hairpin-shaped vortices which appear as quasi-regular

spaced vortex loops in the region immediately downstream of separation.

Figure 6.1: Vortex shedding from a sphere modelled by a sequence of randomly orientated
vortex rings (Howe et al. [83]).

On the basis of these observations, Howe et al. [83] recently modelled the

unsteady lift and drag on a sphere in high-Reynolds-number flow analytically in

terms of a simplified model of vortex shedding that involves coherent eddies in the

form of a succession of randomly orientated vortex rings, interconnected by pairs of

oppositely rotating line vortices and shed quasi-periodically at a Strouhal number

∼ 0.19 (see Figure 6.1). The rings are rapidly dissipated at the higher Reynolds

numbers by turbulence diffusion. However, significant fluctuations in the bound

vorticity can occur only during the shedding of a vortex ring, and it is shown that

the principal contribution to the surface force is supplied by the nascent vortex

ring, and that the force spectrum at Strouhal numbers exceeding unity is effectively

independent of the shape of the fully formed vortex. At these frequencies, Howe

et al.’s predictions of the lift and drag spectra based on this model are in close

agreement with their towing tank measurements.
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6.1.2 Hairpin vortices

A hairpin (or horseshoe) vortex is a common vortical structure in the wake of a

bluff body or in turbulent boundary layers. In addition to the work introduced in

Section 6.1.1, it has long been known that spheres placed in either a uniform flow

or a shear flow will shed hairpin-type vortices under certain flow conditions [1].

Since Theodorsen [146] proposed that the key element of the turbulent boundary

layer structure is the hairpin vortex, there has been immense interest in the detection

and characterisation of the vortical structures in turbulent boundary layers, and a

systematic review has recently been given by Ahn [4] (2005). Here we will survey

some of the representative studies related to hairpin vortices.

As the pioneer of this idea, Theodorsen [146] proposed a hairpin vortex model

describing an instantaneous structure of the turbulent boundary layer. In his model,

a hairpin-like vortex rises from the wall and grows outward with an angle of 45◦

to the wall, and the length between vortex legs is in inverse proportion to the

distance from the wall. Head and Bandyopadhyay [69] investigated a turbulent

boundary layer over a wider range of Reynolds numbers and observed a large

number of hairpin vortices which are stretched out and thin at high Reynolds

numbers, while at lower Reynolds numbers these vortices are thick (see Figure 6.2).

Figure 6.2: Hairpin vortex shapes at different Reynolds number (500 < Reθ < 17500) flows
(Head and Bandyopadhyay [69]).
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They concluded that the turbulent boundary layer consists of a bunch of hairpin

vortices inclined at 45◦ to the wall, and that these vortices maintain 45◦ for some

distance while they are convected downstream. On the basis of flow visualization

of the turbulent boundary layer, similar vortices of 45◦ inclination were detected

by Bandyopadhyay [9], Perry et al. [118], Smith [137] and Acarlar and Smith [1].

However, there is no clear explanation for the 45◦ angle, other than the fact that the

maximum mean rate of strain is acting at 45◦.

Numerical simulations of turbulent flow also support the existence of hairpin

vortices in wall turbulence. Moin and Kim [108] investigated turbulent channel flow

with Large Eddy Simulation (LES) technique and found that the inclination angle of

vorticity vectors attains its maximum at 45◦ to the wall. Kim and Moin [90] further

investigated the same vorticity field to identify the vortical structures associated

with the bursting process in wall turbulent flow, and showed that the ensemble

averaged vorticity fields also provide strong evidence for the existence of hairpin

vortices inclined at 45◦ to the wall during the bursting process. The numerical work

of Singer and Joslin [135] showed the growth of a hairpin vortex in a flat plate

boundary layer into a young turbulent spot, in which the legs of the vortex are

stretched into a hairpin shape as it travels downstream.

Metzler [103] observed that under certain conditions symmetric, controlled

hairpin vortices are generated in the separated laminar wake behind a hemisphere.

Based on Metzler’s observations, a comprehensive study was carried out by Acarlar

and Smith [1] on the hairpin vortices generated by the interaction of a hemispherical

protuberance within a developing low-Reynolds-number boundary layer, and it

has been observed that many of the visual patterns in the near-wall region of the

turbulent boundary layer can also be detected in the wake of the hairpin-shedding

hemisphere. They summarised that once a hairpin vortex is formed, its transverse

tip, head and counter-rotating legs begin to move away from the wall, and it aligns

at 45◦ to the wall while moving downstream. As the hairpin rises the upper portions

of the legs migrate across the boundary-layer velocity gradient, which results in a

stretching of the legs. The portions of the legs that merge together begin to interact

via viscous effects resulting in a mutual vorticity cancellation. The growth of the
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hairpin head appears to continue as long as the head is in the boundary layer. Once

the head passes out of the boundary layer, it is only under the influence of its own

induced velocity and free-stream advection.

6.1.3 Motivation and structure of the chapter

Motivated by the analytical model of Howe et al. [83] and the observations of Acarlar

and Smith [1], in this thesis we assume that the hairpin vortices in the wake of a

hemispherical surface protuberance can be modelled by considering a succession

of quasi-periodically shed half vortex rings that are aligned symmetrically with

the vertical plane and inclined mainly at 45◦ to the wall. Howe et al.’s sphere

model [83] will therefore be extended to determine the fluctuating lift and drag on

a wall-mounted hemisphere, so that the drag dipole noise from a hemispherical

roughness element can be evaluated approximately.

Firstly, Howe et al.’s model [83] of lift and drag fluctuations on a sphere is

introduced succinctly in Section 6.2 summarising the main points of the derivation

for completeness of the idea. Then we formulate the theory of drag dipole noise

from hemispherical bosses on an otherwise flat plate in Section 6.3 and present

two alternative approaches of determining the spectrum of the unsteady drag, i.e.

Glegg et al.’s drag model [61] for relatively large roughness elements (Region II in

Figure 2.3) and the wall-mounted hemisphere model developed in this work for

very large roughness elements (the upper section of Region III). Section 6.4 presents

numerical predictions for the unsteady lift and drag during the initial stages of

vortex formation, and preliminary assessments of the drag dipole noise and its

comparison with the scattering noise.

6.2 Howe et al.’s Sphere Model of Unsteady Forces

6.2.1 Analytical model of vortex shedding

In the analytical model, Howe et al. [83] consider a rigid sphere of radius R situated

in the presence of a nominally steady, incompressible flow at speed U in the positive
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x-direction. The centre of the sphere is at the origin of the Cartesian coordinates

(x, y, z). The wake flow is turbulent owing to the sufficiently high Reynolds number,

and its dominant characteristics are modelled by a sequence of vortex rings depicted

schematically in Figure 6.1. The rings are shed from the sphere quasi-periodically at

frequency f0 and Strouhal number f0D/U ∼ 0.2, where D = 2R is the diameter of

the sphere.

The vortex rings are assumed to translate in the mean stream direction with their

centres on the x-axis at a constant convection velocity Uc ≈ 0.7U . The nth ring has

radius a and circulation Γ (see Figure 6.1); its normal nn to the plane of the ring

makes an angle θn (0 6 θn 6 π/2) with the positive x-axis, and ϕn is denoted as

the azimuthal angle between the y-direction and the plane defined by the x-axis and

nn. As the ring tip is convected downstream, the arc increases in length with its

attachment points to the sphere moving around z = 0 to the separation points A

and B, as illustrated in Figures 6.1 and 6.3. If shedding starts for the nth ring at time

t = tn, it is complete when t = tn + δtn, where δtn denotes the duration of shedding,

δtn = 2a sin θn/Uc, (6.1)

and the position of the centre of this ring on the x-axis is

xn(t) = Uc(t− tn) +
√
R2 − a2 cos2 θn − a sin θn, t > tn. (6.2)

As pointed out by Howe et al. [83], the proposed shedding mechanism can produce

quasi-periodic and potentially large-amplitude fluctuations in the “lift” force.

6.2.1.1 The surface forces

According to Howe [80], the net force exerted on the sphere in the i-direction in

incompressible flow can be expressed as

Fi(t) = ρ0

∫
∇Xi · (ω ∧ v) d3x− η

∮
S

(ω ∧∇Xi) · dS, (6.3)

where ρ0, η are the mean density and shear viscosity of the fluid; v(x, t) is the fluid

velocity, and ω ≡ curl v is the vorticity; the auxiliary function

Xi = xi

(
1 +

R3

2|x|3

)
(6.4)
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coincides with the velocity potential of an ideal flow past the sphere that has unit

speed in the i-direction at large distances from the sphere. The surface integral in

Equation (6.3) represents the surface force produced by the viscous skin friction and

can be discarded at high Reynolds numbers. Thus, the net force can be obtained by

Fi(t) =
∞∑

n=−∞

Fin(t), (6.5)

where Fin(t) denotes the force component attributable to the nth vortex ring,

Fin(t) = 0, t < tn

= ρ0

∫
∇Xi · (ωn ∧ v) d3x, t > tn,

(6.6)

and ωn(x, t) is the vorticity distribution of the nth ring.

To evaluate the volume integral in Equation (6.6), Howe et al. [83] assume the

cross-section of the vortex ring core to be infinitesimal, and to fix ideas they consider

the case in which the nth ring is orientated with its normal nn in the (x, y)-plane (i.e.

ϕn = 0). If ξ is defined as the angle measured from the lower point of intersection

of the ring and the (x, y)-plane (where y < 0, see Figure 6.3), s = aξ denotes the

Figure 6.3: View from downstream and above of a vortex ring separating from the sphere at
A and B when ϕn = 0. The angle ξn(t) determines the total arc length 2aξn(t) of
the shed vortex during separation (Howe et al. [83]).
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curvilinear distance along the axis of the core in the right-handed sense with respect

to nn. The instantaneous velocity v must satisfy the no-slip boundary condition on

the sphere, but Howe et al. take v = (Uc, 0, 0) on the ring to account for uniform

convection of the vortex at constant speed Uc in the x-direction, so that

(ωn ∧ v) d3x = ΓUc(0, cos ξ, cos θn sin ξ)a dξ, (6.7)

and hence

Fin(t) = ρ0UcΓa

∫ ξn(t)

−ξn(t)

(
cos ξ

∂Xi

∂y
+ cos θn sin ξ

∂Xi

∂z

)
dξ, t > tn. (6.8)

In the above formula the integral bounds are taken as

ξn(t) = π, t > tn + δtn

=
π

2
+ sin−1

[
x2

n(t) + a2 −R2

2axn(t) sin θn

]
, tn < t < tn + δtn,

(6.9)

and the derivatives ∂Xi/∂y, ∂Xi/∂z are evaluated on the vortex ring at the

integration point given by

x =
(
xn(t) + a sin θn cos ξ,−a cos θn cos ξ,−a sin ξ

)
. (6.10)

6.2.1.2 The unsteady lift and drag

When ϕn = 0, it is evident by symmetry that Fn of the nth vortex ring can be

resolved into a “lift” in the y-direction and a drag in the x-direction. The mean lift

must vanish, but the root-mean-square lift is the same in all directions transverse to

the mean flow, and may be evaluated in the y-direction by setting

Xi = Xy ≡ y

(
1 +

R3

2|x|3

)
(6.11)

in Formula (6.8). When ϕn 6= 0, the component of the lift Ln in the y-direction can

be obtained by first evaluating it for ϕn = 0 and then multiplying by cosϕn, yielding

Ln = ρ0UcΓa cosϕnFn(t− tn), (6.12)

Fn(t− tn) = 0, t < tn

=

∫ ξn(t)

−ξn(t)

cos ξ

[
1 +

R3
(
x2

n(t) + 2axn(t) cos ξ sin θn + a2(1− 3 cos2 θn)
)

2
(
x2

n(t) + 2axn(t) cos ξ sin θn + a2
)5/2

]
dξ,

t > tn.

(6.13)
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On the other hand, the drag Dn produced by the nth vortex ring is independent of

ϕn. Taking Xi = Xx in Formula (6.8) yields

Dn = ρ0UcΓaGn(t− tn), (6.14)

Gn(t− tn) = 0, t < tn

=
3aR3 cos θn

2

∫ ξn(t)

−ξn(t)

(
xn(t) + a cos ξ sin θn

)
dξ(

x2
n(t) + 2axn(t) cos ξ sin θn + a2

)5/2
, t > tn.

(6.15)

6.2.2 The lift and drag spectra

6.2.2.1 The mean drag

Howe et al. [83] then simulate periodic vortex shedding from the sphere by assuming

that the nth vortex ring starts to form at time tn = nτ , where τ ≡ 1/f0 and f0 ∼

0.2U/D. The mean drag can be written in the form

〈Dn(t)〉 = ρ0UcΓa
∞∑

n=−∞

〈Gn(t− tn)〉, (6.16)

where the angle brackets denote an ensemble average of the train of vortex rings.

Introduce the Fourier transform of Gn(t),

Ĝn(ω) =
1

2π

∫ ∞

0

Gn(t)eiωt dt, (6.17)

and thus the mean drag (6.16) becomes

〈Dn(t)〉 = ρ0UcΓa

∫ ∞

−∞

∞∑
n=−∞

〈Ĝn(ω)〉e−iω(t−nτ) dω. (6.18)

The mean value 〈Ĝn(ω)〉 is independent of n, and the Fourier expansion [96]
∞∑

n=−∞

e−iωnτ =
2π

τ

∞∑
m=−∞

δ

(
ω − 2πm

τ

)
(6.19)

therefore gives

〈Dn(t)〉 =
2πρ0UcΓa

τ

∞∑
m=−∞

〈Ĝn(2πmf0)〉e−i2πmf0t, (6.20)

which shows how the ensemble-average drag varies with time at the fundamental

shedding frequency f0. The time-averaged drag D is thus obtained as

D =
2πρ0UcΓa

τ
〈Ĝn(0)〉 ≡ ρ0UcΓa

τ

∫ ∞

0

〈Gn(t)〉 dt. (6.21)
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Combining D = CD
1
2
ρ0U

2A† and Equation (6.21), the circulation Γ can be expressed

in terms of the mean drag coefficient CD of the sphere:

Γ

UR
=
πCD

2

R

a

U

Uc

/
1

τ

∫ ∞

0

〈Gn(t)〉 dt. (6.22)

6.2.2.2 The spectra of lift and drag fluctuations

The time-dependent lift experienced by the sphere in the y-direction is given by

L (t) = ρ0UcΓa
∞∑

n=−∞

cosϕnFn(t− tn). (6.23)

Evidently the mean lift vanishes since 〈cosϕn〉 = 0. When successive vortices are

statistically independent, 〈cosϕn cosϕm〉 = 1
2
δnm and the mean-square lift becomes

〈L 2(t)〉 =
(ρ0UcΓa)

2

2

∞∑
n=−∞

〈F 2
n(t− tn)〉

=
(ρ0UcΓa)

2

2

∫∫ ∞

−∞

∞∑
n=−∞

〈
F̂n(ω)F̂ ∗

n(ω′)
〉
e−i(ω−ω′)(t−nτ) dω dω′,

(6.24)

where F̂n(ω) is the Fourier transform of Fn(t) as in Equation (6.17). As before, the

ensemble average 〈F̂n(ω)F̂ ∗
n(ω′)〉 does not depend on n, so that the expansion (6.19)

(with ω replaced by ω − ω′) leads to a time-averaged, mean-square lift

L 2 =
π(ρ0UcΓa)

2

τ

∫ ∞

−∞
〈|F̂n(ω)|2〉 dω. (6.25)

The one-sided frequency spectrum of the lift ΦL(ω) satisfying

L 2 =

∫ ∞

0

ΦL(ω) dω (6.26)

is therefore obtained as

ΦL(ω) = (ρ0UcΓa)
2 2π

τ
〈|F̂n(ω)|2〉. (6.27)

Similarly, the frequency spectrum ΦD(ω) of the unsteady drag

D ′(t) = D(t)− 〈D〉 (6.28)

†A = πR2 is the frontal area of the sphere.
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is defined such that

D ′2 =

∫ ∞

0

ΦD(ω) dω, (6.29)

ΦD(ω) = (ρ0UcΓa)
2 4π

τ

[
〈|Ĝn(ω)|2〉 − |〈Ĝn(ω)〉|2

]
. (6.30)

The remaining averages in the spectra (6.27) and (6.30) are to be taken over all

possible orientations θn of the vortex rings.

6.2.3 Comparison of prediction and measurement

Towing tank measurements were conducted by Howe et al. [83] to validate the

theoretical model. The unsteady lift and drag on a sphere of diameter 7.62 cm

were measured in water at four different towing speeds of 10, 15, 20 and 25 cm/s,

corresponding to Reynolds numbers ranging from about 7000 to 17000. Details of

the construction of the apparatus and the experimental procedure can be found in

Howe et al. [83], Wang [154] and Wang et al. [155]. As shown in Figures 6.4, the solid

circles represent average measured values of the normalized lift and drag spectra:

GL(f) = 2πΦL(ω) and GD(f) = 2πΦD(ω), (6.31)

which ensure that

L 2 =

∫ ∞

0

GL(f) df and D2 =

∫ ∞

0

GD(f) df. (6.32)

Also shown in Figure 6.4(a) are the low-frequency lift spectrum (open squares) of

Willmarth and Enlow [159] (1969) averaged over the very high Reynolds numbers

of 4.84, 8.26, 16.46, 16.67× 105.

The solid and broken curves in Figure 6.4 are the predictions of GL(f) and

GD(f) determined by Equations (6.27) and (6.30). In these formulae the Fourier

transforms F̂n(ω), Ĝn(ω) and the circulation Γ involve double integrals with respect

to ξ and t which must be evaluated numerically. Here we use the five-point

Gauss-Legendre quadrature with adjustable subintervals as for the numerical

integrations in Section 3.4.2. The number of subintervals increases exponentially

from 200 to 2000 over the range of Strouhal number, 10−4 6 fD/U 6 102, to ensure

sufficient accuracy at high frequencies. To validate the reliability of our numerical
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Figure 6.4: Measured and predicted (a) lift spectrum and (b) drag spectrum. • • • averaged
measured values for Re = 6680, 10020, 13360, 16700. —- – –, ◦ ⊕ predictions for
the two cases 〈θ〉 = 10◦, 30◦ when averaging is performed over 0.9 < θn/〈θ〉 < 1.1
and a = 0.7R, Uc = 0.7U, CD = 0.4 (reproduced from Howe et al. [83]).

code, we have reproduced the original lift and drag spectra of Howe et al. [83]

(curves) and plotted our results as scatter points in Figure 6.4.

In addition, permissible vortex orientations θn are assumed to be uniformly

distributed over the interval 0.9 < θn/〈θ〉 < 1.1†, where 〈θ〉 is the mean orientation

angle and the two cases 〈θ〉 = 10◦, 30◦ are shown in Figure 6.4. Average values have

been computed using an ensemble of 100 vortex rings. Following Howe et al. [83],

the drag coefficient CD = 0.4 has been taken which is appropriate over the whole

†The original interval given by Howe et al. [83] is 0.5 < θn/〈θ〉 < 1.5. However, although the
lift spectra are only weakly dependent on the extent of the range spanned by θn, the integration of
the drag spectra is sensitive to the interval of θn/〈θ〉. We have validated through recalculation that
it is actually the interval 0.9 < θn/〈θ〉 < 1.1 that is able to reproduce the predictions of GD(f) in
Figure 6.4, and have confirmed with the authors through personal communication that this is in fact
what they used.
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subcritical region whereRe > 103 [130]; and the value a = 0.7R is used for the radius

of the shed vortices because the simplicity of Howe et al.’s analytical model and the

relative insensitivity of their predictions to the ratio a/R suggest that this nominal

value is probably representative of a high-Reynolds-number wake of reduced width

immediately behind the sphere [83].

As can be seen in Figure 6.4, at high Strouhal numbers both sets of theoretical

curves decrease like f−3, independently of 〈θ〉, and this is close to the trend of the

experimental data. Howe et al. [83] then conclude from the remarkable accord in

the absolute levels between prediction and measurement that the proposed model

is correct in principle if not in detail, inasmuch as the high-frequency behaviour of

the spectra is governed by the initial stages in the shedding of a vortex structure.

Predictions at lower frequencies (fD/U < 1) are more critically dependent on the

assumed statistics of the vortex rings, but nonetheless exhibit an acceptable level of

agreement with the early lift measurements made by Willmarth and Enlow [159].

This sphere model of high Reynolds number will be extended to a wall-mounted

hemisphere model in Section 6.3.3 to enable the prediction of noise generated by

very large roughness elements.

6.3 Drag Dipole Noise

6.3.1 Theoretical formulation

We now consider the sound generated by enhanced drag fluctuations on the wall

which result from local vortex shedding from each roughness element. The physical

process is assumed to be the same as noise from the unsteady loads on rigid,

stationary objects in a steady flow and so each individual roughness element

behaves as a drag dipole. Therefore the acoustic field radiated by the unsteady

forcing exerted on the solid boundary can be derived from the classical FW-H

equation [53] as:

p(x, ω) =

∮
S(y)

∂G(x,y, ω)

∂yi

njpij(y, ω) dS(y), (6.33)
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where S denotes the rigid rough surface defined by y2 = ξ(y1, 0, y3) and n is the

normal vector of S. The rough surface is formed by a number of rigid hemispherical

bosses of radius R over the plane y2 = 0, and the pressure fluctuations are subject to

the rigid boundary condition ∂p/∂yn = 0 everywhere on the surface.

To determine the sound field, we introduce the half free space Green’s function

in the frequency domain:

G(x,y, ω) =
−eiω|x−y|/c

2π|x− y|
(6.34)

which satisfies the boundary condition

∂G

∂y2

= 0 on the plane y2 = 0. (6.35)

We assume that the roughness height R is much less than the acoustic wavelength

(i.e. compact roughness elements, kR < 1) and that the far-field observer x is

situated at a distance much greater than R, so that the derivatives of the Green’s

function, ∂G/∂yi, are uniform over the hemispherical elements. Therefore the

surface integral of the acoustic field (6.33) becomes

p(x, ω) = −∂G(x,yO, ω)

∂xi

∮
S(y)

njpij(y, ω) dS(y); (6.36)

herein the reciprocal relationship

∂G

∂xi

= −∂G
∂yi

(6.37)

is used and yO = (0, 0, 0).

In the above integral (6.36), pij represents the compressive stress tensor on the

surface,

pij = (p− p0)δij − σij, (6.38)

where σij is the viscous stress tensor, and the notation is adopted that pij is in

the i-direction acting on a surface with the normal in the j-direction. We apply a

no-slip condition so that the Reynolds stress can be set to zero on the wall. There

are two categories of pij components that can contribute to this integral. The first

is comprised of the normal stress components p11, p22, p33 which account for the

contributions from the fluctuating surface pressures, and the second is from the
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shear stress components p12, p13, p23, etc. We can define the force vector

fi = −njpij = −ni(p− p0) + njσij (6.39)

which represents the force per unit area externally applied on the fluid by the rigid

roughness bosses. As we will discuss later, generally the force components f2, f3

normal to the direction of flow either cancel out or can be neglected, and so we can

limit consideration to the drag fluctuations in the x1-direction.

For x in the far field, the half free space Green’s function can be approximated as

G(x,y, ω) ≈ −eik|x|−ikx·y/|x|

2π|x|
, (6.40)

and its derivative in the x1-direction is approximated by

∂G

∂x1

≈ ikx1
eik|x|−ikx·y/|x|

2π|x|2
. (6.41)

Substituting Equations (6.39) and (6.41) into the surface integral (6.36), we obtain

the far-field acoustic frequency spectrum as

p(x, ω) =
ik cos θ eik|x|

2π|x|

∫
S(y)

f1(y, ω) dS(y), (6.42)

where cos θ = x1/|x| denotes the dipole directivity.

If the surface has N roughness elements located at xm = (xm1, 0, xm3) which

cause a fluctuating drag Dm(ω), the ensemble drag force is

f1(y, ω) =
N∑

m=1

Dm(ω)δ(y1 − xm1)δ(y3 − xm3). (6.43)

If the roughness elements are large enough that they mostly lie in the logarithmic

layer or the outer region, we would expect that the drag on each roughness element

is determined by vortex shedding from the element in isolation. The unsteady drag

on each individual element is uncorrelated and thus the aggregate power spectrum

of the far-field sound can be obtained by adding up the sound radiation from each

roughness drag dipole, i.e.

PD(x, ω) =

(
k cos θ

2π|x|

)2 N∑
m=1

ΦDm(ω), (6.44)

where ΦDm(ω) is the spectrum of the drag fluctuations on each element.
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6.3.2 Glegg et al.’s drag model

Glegg et al. [61] (2007) have recently investigated noise generation owing to

enhanced shear stress fluctuations by relatively large roughness elements contained

in the logarithmic layer (Region II in Figure 2.3). In this case the normal

stress components p11 and p33 can be first neglected in the integral (6.36) due

to the relatively small surface irregularities. The contribution from the pressure

fluctuations p22 at the wall, identified as the source mechanism of sound scattering,

has been discussed via a different approach in Chapter 3 and would not be repeated

here. In addition, the shear stress component p21 does not contribute to the integral

either, because the far-field approximated Green’s function (6.40) satisfies

∂G

∂x2

≈ 0 on x2 = 0. (6.45)

The unsteady forces are hence associated with the skin friction drag arising from

the viscous shear stresses tangential to the wall. In this work, Glegg et al. [61]

assume that the shear stresses p31, p32 normal to the flow direction are negligible†

and consider only the shear stress p12 in the drag direction.

In Equation (6.44) the unsteady drag spectrum ΦDm on the roughness bosses

needs to be determined to evaluate the far-field acoustic pressure spectrum

PD(x, ω). To do this Glegg et al. [61] suggested using existing semi-empirical

techniques for estimating the noise from bluff bodies. As pointed out by Glegg

et al. [61], the most work in this area so far has been the investigation of the noise

from splitter plates in flow ducts. In Nelson and Morfey’s work [114], for example,

they related the unsteady drag spectrum of a splitter plate to the steady drag. Glegg

et al. [60] then successfully applied these results to estimate the noise from bluff

bodies on wind turbine blades. In the very recent work by Glegg et al. [61], the same

approach was used to give a first estimate of the roughness drag spectrum and will

be summarised below.

The concept of Glegg et al.’s approach [60] is to define the unsteady loading as

the product of the steady loading and a loading spectrum:

ΦDm(ω) = DmF (St), (6.46)
†According to tensor symmetry the shear stress components p13, p23 ≈ 0, too.
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where Dm is the steady drag on each roughness element; the spectrum F (St) is a

function of the Strouhal number

St =
ωdm

2πUm

, (6.47)

defined for each element with the element width dm and the local velocity Um that it

is exposed to. Glegg et al. [60] gave F (St) in the form:

F (St) = 8.6× 10−7 dm

Um

St−3. (6.48)

However, this formula is based on the measurements of Nelson and Morfey [114]

which consider Strouhal numbers St > 0.1 only. The results presented by

Beranek [14] suggest a spectral peak at a Strouhal number of 0.2 rather than the

monotonic decrease with Strouhal number in Equation (6.48). Glegg et al. [61] then

proposed to use the formula

F (St) = 8.6× 10−7 dm

Um

125(5St)2[
1/4 + (5St)2

]5/2
(6.49)

which matches the spectra in Nelson and Morfey [114] and Beranek [14] and has a

peak at the frequency ω ∼ 0.4πUm/dm.

The scaling of the spectrum function (6.49) leads to the concept of a friction

frequency defined as

ωτ = Ex

[
Um

dm

]
= Ex

[
AUm

hm

]
, A = Ex

[
hm

dm

]
, (6.50)

where hm is the roughness height; A denotes the expected aspect ratio of the

roughness elements and reduces to unity in the case of hemispherical bosses. The

Strouhal number then becomes St = ω/2πωτ . The expected steady loading on each

roughness element, as estimated by Glegg et al. [61], is τwS/N where τw = ρ0u
2
τ is the

surface shear stress and S is the surface area. Therefore the unsteady drag spectrum

may be represented by the aggregate drag of N elements,

N∑
m=1

ΦDm(ω) = N(τwS/N)2SF (ω), (6.51)

where

SF (ω) = Ex
[
F (St)

]
(6.52)
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is an expected spectrum function. It appears in Equation (6.51) that the sum of the

drag spectrum ΦDm scales as 1/N for a given shear stress. However τw also increases

with the number of elements and so the actual level of
∑

ΦDm is proportional to N .

From Equations (6.44–6.51) the far-field radiated noise spectrum due to the drag

fluctuations can be obtained as

PD(x, ω) =

(
cos θ

π|x|c

)2
τ 2
wS

2

16N
ωτΩ

2
τ S̃F (Ωτ ), (6.53)

S̃F (Ωτ ) = 8.6× 10−7 125(5Ωτ/2π)2[
1/4 + (5Ωτ/2π)2

]5/2
, (6.54)

where Ωτ = ω/ωτ . The noise spectrum is dependent on the friction velocity uτ

and the local velocity Um. In the logarithmic layer Um will increase with roughness

height hm and Glegg et al. [61] suggested to use the formula by Schlichting [130]:

Um = uτ

(
8.5 + 5.75 log10

hm

2ks

)
, (6.55)

where the length scale ks is determined by Blake [17] from the roughness defect

deficit. Glegg et al. [61] expected that typically ks ≈ 2hm and thus Um ∼ 5uτ .

Glegg et al. [61] then calculated a preliminary case of PD(x, ω) for an aspect ratio

of A = 2 and compared it to Howe’s empirical spectrum (3.41) [82] of the sound

scattering mechanism. As have been mentioned in Section 2.3.3.3, they found that

the peak frequency of Howe’s spectrum is about twice that of the shear stress noise

spectrum and that the scattering mechanism dominates the sound radiation by ∼

46 dB†. For larger roughness elements Glegg et al. [61] suggested to approximate the

local velocity by outer variables as

Um = U(hm/2δ99)
1/7 ≈ 15uτ . (6.56)

However, since this scaling of flow parameters is suspect for roughness elements

this large they speculated that estimating the level for this noise source is probably

unreasonable.
†This order may need be corrected to∼ 40 dB. Glegg et al. failed to include the sound reflected by

the surface, in that they used a free space Green’s function in the derivation of the acoustic field [61].
Accordingly, the factor 16 in Equation (6.53) should be replaced by 4 and so the spectral level of the
shear stress noise is augmented by a factor of 4.
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6.3.3 Wall-mounted hemisphere model

In this section, we consider the drag dipole noise due to very large hemispherical

roughness elements that protrude far beyond the logarithmic layer (i.e. in the upper

section of Region III, see Figure 2.3). The Reynolds number is generally very high

for hemispheres this large and so we discard the shear stress components of pij due

to the viscous skin friction in the surface integral (6.36). To evaluate the contribution

from the normal stress components, i.e. the fluctuating surface pressures p11, p22 and

p33, we will modify the sphere model proposed by Howe et al. [83] (see Section 6.2)

to attain the unsteady surface forces on a wall-mounted hemisphere in a nominally

steady, incompressible flow. To be consistent with the sphere model, here we

follow the coordinates (x, y, z) that correspond to the notation (x1, x2, x3) used in

the derivation of the acoustic field in Section 6.3.1.

Figure 6.5: Schematic of vortex shedding from a wall-mounted hemisphere modelled by a
sequence of vortex semi-circular arcs.

Figure 6.5 depicts schematically the periodic vortex shedding from a rigid

hemisphere placed on a flat plate. Compared with the vortex shedding from a

sphere in Figure 6.1, only one half of the vortex ring is able to be formed in

Figure 6.5 due to the restriction of the plate plane, leading to the development

of a succession of vortex semi-circular arcs in the hemisphere wake. Indeed,

Acarlar and Smith [1] have observed periodically shed hairpin vortices generated

by a surface hemispherical protuberance within a developing laminar boundary

layer. As a crude model of gross oversimplification, these hairpin vortices could
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be approximated by the “vortex semi-circular arcs” of radius a as illustrated in

Figure 6.5. In a more general view of the problem, the length awould be interpreted

as the radius of curvature of the initial thread of the large-scale hairpin-like vortex

loops that are periodically shed from the hemisphere.

Because the sphere in free space is now replaced by a hemisphere in half free

space, some parameters described in Section 6.2 must be accordingly modified for

the wall-mounted hemisphere model. Under these circumstances the formation and

translation of the vortex loops are restricted due to the existence of a supporting

plate, which mitigates somewhat the randomness of the varying vortex orientations.

Firstly, we redefine θn as the angle between the normal nn to the plane of the nth

vortex loop and the negative x-axis. In the wake of the hemisphere, permissible

vortex loops are aligned with the tip of the vortex downstream (see Figure 6.5),

i.e. 0 6 θn 6 π/2. According to the experimental observations and numerical

simulations of the hairpin-type vortices developed on a flat plate (see Section 6.1.2),

it might be appropriate to use the mean orientation angle 〈θ〉 ≈ 45◦ for the vortex

loops shed from a surface hemisphere.

Figure 6.6: View from downstream and above of a vortex loop separating from the
hemisphere at the intersection points A and B, ϕn ≡ 0 (modified from Figure 6.3).
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Figure 6.5 illustrates the situation when one nascent vortex semi-circular arc is

formed and is about to separate from the hemisphere. After the vortex is released

by the hemisphere, we have

ξn(t) = π/2 for t > tn + δtn. (6.57)

At earlier times ξn(t) is the angle illustrated in Figure 6.6, determined by the points

of intersection (labelled A and B) of the vortex loop with the hemisphere surface.

The formula of ξn(t) is still given by Equation (6.9) and it is obvious that

ξn(t) < π/2 for tn < t < tn + δtn. (6.58)

However, the duration of shedding δtn for the nth loop is not a sin θn/Uc by simply

dividing Equation (6.1) by 2. When the shedding is complete ξn(t) = π/2 and it

is evident from Equation (6.9) and Figure 6.6 that the position of the centre of this

vortex loop on the x-axis reduces to

xn(t) =
√
R2 − a2, t = tn + δtn. (6.59)

Substituting this expression into Equation (6.2), we obtain the duration of shedding

for the vortex semi-circular arc as

δtn =
(
a sin θn +

√
R2 − a2 −

√
R2 − a2 cos θ2

n

)/
Uc. (6.60)

Since the vortex loops are now formed above the plate plane, in Figure 6.6 the

direction of Γ is reversed compared to that in Figure 6.3, and the angle ξ should be

measured from the “higher” point of intersection of the loop and the (x, y)-plane

(where y > 0). Thus the integration point given in Equation (6.10) becomes

x =
(
xn(t) + a sin θn cos ξ, a cos θn cos ξ,−a sin ξ

)
. (6.61)

Moreover, the hemisphere halves the frontal area (A = πR2/2) and this may affect

the value of the circulation Γ in Equation (6.22) which now takes the form:

Γ

UR
=
πCD

4

R

a

U

Uc

/
1

τ

∫ ∞

0

〈Gn(t)〉 dt. (6.62)

However, the integral in the denominator
∫∞

0
〈Gn(t)〉 dt also decreases by a factor∼ 2

due to the halved maximum angle ξn(t) (i.e. π → π/2), and hence the value of Γ is

almost unchanged for the hemisphere model.
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We now evaluate the unsteady surface forces exerted on the hemisphere.

Generally, the contribution Fn of the nth vortex loop to the net force on the

hemisphere can be resolved into three components F1n, F2n and F3n in which the

components of the lift Ln and the drag Dn (i.e. F1n and F2n) have been derived in

Equations (6.12) and (6.14), respectively. The force component F3n that is transverse

to the flow and tangential to the plate is obtained by taking

Xi = Xz ≡ z

(
1 +

R3

2|x|3

)
(6.63)

in Equation (6.8) and multiplying by sinϕn. Owing to the confinement of the

plate plane, we assume that the wake behind the hemisphere appears more like an

attached turbulent boundary layer than the free-sphere case. Therefore the vortex

loops in Figure 6.5 can be modelled as symmetric to the (x, y)-plane resulting in an

azimuthal angle ϕn ≈ 0, and the transverse force component F3n is hence neglected.

Moreover, when considering the acoustic field due to the fluctuating surface forces

on a wall-mounted hemisphere, the image-vortex effects will cause the mutual

cancellation of the contribution from the lift component F2n and double† that from

the drag component F1n (see Appendix D.1 for details).

Therefore, the far-field radiated drag dipole noise PD(x, ω) generated by N

very large hemispherical roughness elements is achieved by substituting the drag

spectrum (6.30) into the acoustic spectrum (6.44) to obtain

PD(x, ω) =

(
cos θ

|x|c

)2
Nω2

πτ
(ρ0UcΓa)

2
[
〈|Ĝn(ω)|2〉 − |〈Ĝn(ω)〉|2

]
, (6.64)

where the circulation and the Fourier transform,

Γ =
CDAτU

2

2aUc

/〈∫ ∞

0

∫ ξn(t)

−ξn(t)

(
xn(t) + a cos ξ sin θn

)
dξ(

x2
n(t) + 2axn(t) cos ξ sin θn + a2

)5/2
dt

〉
(6.65)

and

Ĝn(ω) =
3aR3 cos θn

4π

∫ ∞

0

∫ ξn(t)

−ξn(t)

(
xn(t) + a cos ξ sin θn

)
dξ(

x2
n(t) + 2axn(t) cos ξ sin θn + a2

)5/2
eiωt dt, (6.66)

must be integrated numerically with respect to ξ and t with the modifications given

parametrically in Equations (6.57–6.62) applied.

†This effect has been included in the half free space Green’s function (6.34).
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6.4 Numerical Prediction

6.4.1 Small-time approximation

6.4.1.1 Time dependence

Following Howe et al. [83] we first calculate the dependence of the nondimensional

lift Ln/ρ0UcΓa cosϕn and drag Dn/ρ0UcΓa on the nondimensional time Uc(t− tn)/R

for the case in which a = 0.7R and θn = π/8. Figures 6.7(a) and 6.7(b) show the

comparison between the sphere and hemisphere models for the unsteady lift and

drag, respectively. For the sphere model [83], the lift grows rapidly during the initial

stages of shedding, attaining a maximum when about half a vortex ring has been

formed; the subsequent vorticity of opposite sign reduces the net circulation around

the sphere and causes the lift to decrease. After release at time A the lift decays

slowly and becomes negligible when the ring has convected about a sphere radius

R into the wake. For the hemisphere model, the lift grows in a similar way as in the

sphere model until half vortex ring is formed at time B. After the half ring is released,

the lift first attains a maximum and then decays slowly approaching a constant ∼ 2.

The difference in the lift variations after time B between the two models can

be explained by Figure 6.8 which illustrates the variations of ξn(t)/π determined by

Formula (6.9) and the integrands Ḟn, Ġn of Fn,Gn in Equations (6.13) and (6.15) with

time. Firstly, ξn(t) increases from 0 to π (sphere) or π/2 (hemisphere) and maintains

this maximum after the vortex is released. For the sphere, Ḟn decreases rapidly

from shedding and becomes negative when half a vortex ring has been formed.

However for the hemisphere, Ḟn decays identically as the sphere until half ring is

released and becomes negligible afterwards, maintaining positive during shedding.

The unaltered sign of Ḟn after the formation of the half vortex ring accounts for the

slow decay of the lift on the hemisphere after time B, as shown in Figure 6.7(a).

In fact, Acarlar and Smith [1] have observed that a standing vortex would be

generated near the leading edge of a hemispherical protuberance on a flat plate,

forming a stationary horseshoe-shaped structure passing around the hemisphere.

They used the concept of concentration of vorticity to describe the formation
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(a) Ln/ρ0UcΓa cos ϕn

(b) Dn/ρ0UcΓa

Figure 6.7: Variation of the nondimensional lift and drag during shedding from the sphere
and hemisphere, respectively, when a = 0.7R, θn = π/8. Important time points:
A – full vortex ring released from the sphere, and B – half vortex ring released
from the hemisphere.

of the standing vortex in the vicinity of the hemisphere, and explained that

boundary-layer flows (laminar or turbulent) can be characterized as a shear layer

represented by vortex sheets consisting of vortex lines [150]. Initially, as the laminar

boundary layer impinges upon the hemisphere, the undisturbed vortex sheets

laying below the upstream stagnation point undergo a retardation. The impinging

vortex sheets roll up to form the standing vortex [1].
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(a) Sphere model

(b) Hemisphere model

Figure 6.8: Variation of ξn(t)/π (� � �) and the integrands Ḟn (• • •), Ġn (◦ ◦ ◦) of
Equations (6.13) and (6.15) with the nondimensional time Uc(t − tn)/R for the
sphere model and hemisphere model, respectively, when a = 0.7R, θn = π/8.

According to the observations of Acarlar and Smith [1], the two legs of this

standing vortex embrace the succession of hairpin-like half vortex rings shed from

the hemisphere and will be elongated by the translation of the hairpin vortices

along the plate surface. The vorticity in the leg of the standing vortex is in

opposite direction with the vorticity in the adjacent arc of the hairpin vortex. We

hence speculate that the counteraction of vorticity between the standing vortex

and hairpin vortices could reduce the net circulation around the hemisphere, and
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presumably the unsteady lift on the hemisphere as in Figure 6.7(a) would not

maintain a positive constant value at large time. The validation of this speculation

is suggested as an area of future work.

On the other hand, the drag variations on the sphere and hemisphere are similar

in trend. As shown in Figures 6.7(b), the drag increases monotonically until the

vortex ring or half vortex ring is released at time A or B; it subsequently decreases

slowly and is negligible when the ring or half ring is about a distance of 3R

downstream. Curves of the drag of both models coincide with each other before

the half vortex ring is formed, and after release they decay at different rates to 0.

Figure 6.8 also shows the similar variations of Ġn during shedding for the sphere

and hemisphere.

6.4.1.2 High-frequency representation

The above discussions imply that the behaviour of the vortex in the distant wake

makes a very limited contribution to the unsteady surface forces except through the

lift on the hemisphere. Nevertheless, this considerable lift is unlikely to contribute

to the far-field sound pressure as it becomes quasi-steady (i.e. ∂Ln/∂t ≈ 0) when

Uc(t − tn)/R � 1. Also lift force is cancelled by equal opposite image in plane

surface. Therefore we confine attention to the small-time characteristics of the lift

and drag because the high-frequency dependence of their spectra is governed by

their behaviour during the initial stages of formation of a vortex structure.

In Appendix D.2 we have derived the approximations of Fn(t), Gn(t) when

Uc(t− tn)/R� 1 for the sphere model as:

Fn(t) ≈ 3

√
2Uc(t− tn)

a

[
1−

( a
R

)2

cos2 θn

]
H , (6.67a)

Gn(t) ≈ 3a cos θn

R

√
2Uc(t− tn)

a

[
1−

( a
R

)2

cos2 θn

]1/2

H , (6.67b)

where the auxiliary term

H =

[ √
R2 − a2 cos2 θn

sin θn

(√
R2 − a2 cos2 θn − a sin θn

)]1/2

. (6.68)
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By evaluating the Fourier transforms F̂n(ω), Ĝn(ω) from Equations (6.67) we obtain

the high-frequency representations for the spectra of the unsteady lift and drag (see

Appendix D.2):

ΦL(ω) ∼ (ρ0UcΓa)
2 9Uc

4τaω3

〈[
1−

( a
R

)2

cos2 θn

]2

H 2

〉
, (6.69a)

ΦD(ω) ∼ (ρ0UcΓa)
2 a

2

R2

9Uc

2τaω3

[
〈|E |2〉 − |〈E 〉|2

]
, (6.69b)

where

E = −
√

2

2
(1 + i) cos2 θn

[
1−

( a
R

)2

cos2 θn

]1/2

H . (6.70)

Note that Equations (6.67b) and (6.69b) are also valid for the hemisphere model due

to its identical initial-stage behaviours of vortex formation with the sphere model.

Figures 6.9(a) and 6.9(b) illustrate the comparison between the small-time

approximation and numerical integration of the normalized lift and drag spectra

10 log10

(
(U/D)GL(f)/(ρ0U

2A)2
)
, 10 log10

(
(U/D)GD(f)/(ρ0U

2A)2
)
, respectively, for

the sphere model. Averages have been taken using an ensemble of 100 vortex rings.

As shown in Figures 6.9(a), the approximated lift spectra almost coincide with the

integrated spectra for the two cases 〈θ〉 = 10◦, 30◦. Both sets of approximated and

integrated predictions decay like f−3 at high frequencies, independently of the value

of the mean orientation angle 〈θ〉.

For the drag spectrum, however, the approximated and integrated curves agree

in trend (f−3) at high frequencies but not in absolute levels. Nevertheless, the

remarkable accord between approximation and experiment in both the trend and

absolute levels, particularly in the Strouhal number range 3 < fD/U 6 15, implies

that the high-frequency representation (6.69b) is presumably a good asymptotic

approximation for the drag spectrum ΦD(ω). When evaluating Equation (6.30) we

discovered that the small-time approximation and numerical integration actually

yield very close values for either mean square, 〈|Ĝn(ω)|2〉 or |〈Ĝn(ω)〉|2. However,

ΦD(ω) is determined by the difference between the two mean squares which is

numerically sensitive to different methods of evaluation. This numerical error

perhaps accounts in part for the discrepancy between the drag spectra obtained by

the asymptotic approximation and numerical integration.
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(a) Lift spectrum

(b) Drag spectrum

Figure 6.9: Comparison of approximated and integrated predictions of the lift and drag
spectra for the two cases 〈θ〉 = 10◦, 30◦ when averaging is performed over 0.9 <
θn/〈θ〉 < 1.1 and a = 0.7R, Uc = 0.7U, CD = 0.4. Small-time approximations:
◦ ◦ ◦ 〈θ〉 = 30◦, � � � 〈θ〉 = 10◦. Numerical integrations: ——- 〈θ〉 = 30◦,
– – – 〈θ〉 = 10◦. Also shown are • • • the averaged measured values for
Re = 6680, 10020, 13360, 16700 by Howe et al. [83]. The sphere model.

In Figure 6.10 are shown the approximated and integrated drag spectra for the

hemisphere model. The drag coefficient CD = 0.4 is taken as the sphere model

for Reynolds numbers in the subcritical region. The low-frequency dependence

of the drag spectra (fD/U < 0.1) in Figure 6.10 agrees with that in Figure 6.9(b)

and this should be attributed to the approximate large-time behaviours of the drag

when Uc(t − tn)/R > 3 between the sphere and hemisphere models as shown
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Figure 6.10: Approximated and integrated drag spectra for the two cases 〈θ〉 = 10◦, 30◦ over
the interval 0.9 < θn/〈θ〉 < 1.1 and a = 0.7R, Uc = 0.7U, CD = 0.4. Small-time
approximations: ◦ ◦ ◦ 〈θ〉 = 30◦, � � � 〈θ〉 = 10◦. Numerical integrations:
—— 〈θ〉 = 30◦, – – – 〈θ〉 = 10◦. The hemisphere model.

in Figure 6.7(b). At high frequencies (fD/U > 1), it is shown that the spectral

level oscillates slightly for the larger 〈θ〉 (30◦), and that the discrepancy between

small-time approximation and numerical integration still exists, which implies that

there is scope to improve the drag spectrum model in accuracy.

6.4.2 Noise spectrum

6.4.2.1 Nondimensional spectrum

In this section we will present preliminary predictions for surface roughness

noise generated by the unsteady drag. Figure 6.11 illustrates the nondimensional

noise spectra 10 log10

(
(U/R)−1f 2GD(f)/(ρ0U

2A)2
)

of the sphere model and the

hemisphere model, respectively, plotted as a function of fR/U for the case 〈θ〉 = 45◦.

The vortex orientation angles θn are assumed to occupy the interval 0.75 < θn/〈θ〉 <

1.25 with a = 0.7R, Uc = 0.7U . The additional term f 2 in the noise spectrum and

the large mean orientation angle 〈θ〉 = 45◦ will intensify the numerical oscillation

in spectral levels as shown in Figure 6.10. For this reason, herein we apply a

wider interval 0.75 < θn/〈θ〉 < 1.25 to somewhat alleviate the oscillations at high
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Figure 6.11: Nondimensional drag dipole noise spectra of the sphere and hemisphere
models for the case 〈θ〉 = 45◦ over the interval 0.75 < θn/〈θ〉 < 1.25 and
a = 0.7R, Uc = 0.7U, CD = 0.4.

frequencies (fR/U > 1).

As can be seen from Figure 6.11, the peak frequency of the sphere model occurs

at fR/U ≈ 2.5, higher than that of the hemisphere model at fR/U ≈ 0.7. Unlike the

spectra of the unsteady force, both the noise spectra of the sphere and hemisphere

models decay like f−1 in the high-frequency region and their spectral peaks are

at approximate levels. However, when considering far-field radiation the acoustic

intensity of the wall-mounted hemisphere will be augmented by a factor of 4 due to

the effect of wall reflection and will be about 6 dB higher than that of the sphere in

free space.

6.4.2.2 Comparison with the scattering noise

We now compare the two mechanisms of surface roughness noise: the drag dipole

noise and the scattering noise, respectively. For the drag dipole noise, the roughness

height and roughness density are taken as R = 2 cm, σ = 0.01 for the very large

but sparsely distributed roughness elements, whereas for the scattering noise we

use the three idealized test cases that have been described in Section 5.2.2. As

for the Boeing-757 sized aircraft wing (see Section 5.2.1), we select a flat plate
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with the dimensions Lc = 5 m, Ls = 16.5 m and a far-field observation point at

|x| = 100 m, θ = π/4, φ = 0.

Before applying the wall-mounted hemisphere model to the roughness noise

prediction, we need to make some restrictive assumptions. Firstly, in the derivation

of the far-field drag dipole noise in Section 6.3.1, the roughness elements are

assumed to be compact bluff bodies, i.e. kR < 1. The compactness condition can

also be written as

2πMSt < 1, where St = fR/U. (6.71)

As shown in Figure 6.4, if we take fD/U = 6 from the Strouhal number range where

the predictions are in good accord with the measurements, the low Mach number

M = 0.05 satisfies the compactness condition (6.71), i.e. 2πMSt ≈ 0.9. This Mach

number results in a high Reynolds number based on the radius of the hemisphere,

UR/ν ≈ 2.3 × 104, that falls into the subcritical region 103 < Re < 3 × 105 [130].

Therefore the wall-mounted hemisphere model and the drag coefficient CD = 0.4

are applicable to this preliminary case.

Moreover, because the hemisphere model of unsteady forces is based on a

nominally steady flow, we assume that the roughness elements are located near

the leading edge of the plate to achieve an initial laminar boundary layer before the

hemispheres. According to the Blasius solution for the laminar boundary-layer flow

over a flat plate [42]:

δ =
5.0x1√
Rex

, where Rex =
Ux1

ν
, (6.72)

the boundary-layer thickness at the streamwise distance x1 = 0.5 m, for example, is

δ ∼ 2 mm, and so these hemispherical roughness elements (R = 2 cm) protrude far

beyond the outer region of the boundary layer.

The comparison between the drag dipole noise PD(x, ω) and the scattering noise

PR(x, ω) in the frequency range 20 Hz < f < 100 kHz is shown in Figure 6.12. We

see that the noise spectrum of the drag dipole mechanism again decays like f−1 in

the high-frequency region (f > 1 kHz). For this test case the drag dipole mechanism

shows a spectral peak of about 4 dB, approximate to the spectral peak of Case 1 of the

scattering noise. Nonetheless, the slowly decaying spectral level leads to the much
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Figure 6.12: Comparison of noise spectra between the drag dipole mechanism and the
scattering mechanism. For the drag dipole noise spectrum, R = 2 cm, σ = 0.01
for the case 〈θ〉 = 45◦ over the interval 0.75 < θn/〈θ〉 < 1.25 and a = 0.7R, Uc =
0.7U, CD = 0.4. For the scattering noise spectra, Cases 1–3 are defined in
Section 5.2.2.

wider spectral peak of the drag dipole noise spectrum than those of the scattering

noise spectra, which indicates that the OASPL of the drag dipole noise is higher than

those of the scattering noise. This preliminary test case shows that the drag dipole

noise of very large roughness elements could be comparable to or even higher than

the scattering noise.

6.5 Summary

The alternative source mechanism of surface roughness noise, the drag dipole

mechanism, has been studied in this chapter additional to the sound scattering

mechanism introduced in detail in Chapters 3–5. The aim was to extend the

application of the drag dipole mechanism from relatively large roughness elements

which has been recently investigated by Glegg et al. [61] to very large roughness

elements. The theoretical model proposed by Howe et al. [83] for the lift and drag

fluctuations on a sphere has been modified to determine the unsteady drag on the

wall-mounted hemisphere and hence the far-field generated noise.
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We first surveyed the relevant work on unsteady forces on a sphere and on

hairpin vortices, and decided to model the hairpin vortices behind the hemisphere

by a succession of quasi-periodically shed half vortex rings on the basis of Howe

et al.’s analytical model [83] and Acarlar and Smith’s observations [1]. The major

derivations of the sphere model of Howe et al. [83] were then described briefly

to set the scene for the modifications for the hemisphere model. The theoretical

formulation of the drag dipole noise has been presented and two models of the

unsteady drag spectrum have been introduced. The drag model proposed by Glegg

et al. aims to evaluate the roughness noise due to relatively large elements in the

logarithmic layer, but it is not applicable to larger roughness elements protruding

into the outer region.

In this chapter, we have developed a wall-mounted hemisphere model from

Howe et al.’s sphere model [83] to account for the very large roughness elements

that protrude far beyond the logarithmic layer. The characteristics of the

unsteady lift and drag during the initial stages of vortex formation have been

numerically predicted for both the sphere and hemisphere, and their high-frequency

approximations have been derived. The drag dipole noise spectrum has been

preliminarily assessed by comparing to the scattering noise spectra using the

idealized test cases in Chapter 5. It has been shown that this noise source by very

large roughness elements can be as significant as the scattering noise particularly in

the OASPL.



Chapter 7

Beamforming Correction for Dipole
Measurement

7.1 Introduction

THE conventional beamforming algorithm normally assumes monopole

propagation characteristics to steer the focus of the phased array. Although

such beamforming techniques work well in locating monopole-like sources with

uniform directivities, they can perform poorly when used to reconstruct directional

noise sources such as dipoles. In fact, for many aeroacoustic systems the noise

sources arise from fluctuating loading forces and these are principally of dipole

type. Therefore array measurements can be misinterpreted if applied directly to

aeroacoustic sources without consideration of the source mechanism, particularly if

the axes of the dominant dipoles are not in line with the receiver.

Jordan et al. [89] demonstrated how the monopole assumption can be

problematic for a dipole source. They developed a correction for the phase

difference in microphone signals to be compatible with a dipole source, and applied

it to measurements of a 30-channel linear array for an aeolian-tone dipole produced

by cross flow over a cylinder. The true source location and source energy of the

dipole was then retrieved. In Section 4.3.4.2 we have pointed out the inability

of the conventional beamforming to directly validate theoretical predictions

for dipole-type surface roughness noise. Instead of altering the beamforming

algorithm, we processed the numerical simulation through the same algorithm as

155
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the experiment and compared the simulated and measured source maps. Quayle et

al. [125] have also suggested that a similar mismatch could help explain differences

in estimates of source power from two nested arrays. More accurate estimates

of aeroacoustic dipoles through array measurements are therefore useful as they

can provide insight into the noise generation mechanism, enable the validation of

theoretical and numerical models, and assist the development of noise reduction

technologies.

The analysis by Jordan et al. [89] suggests a technique for dipole correction

of microphone array systems which extends the conventional delay-and-sum

procedure to a process of delay-analyze-and-sum. The analysis stage adds an

examination of the phase characteristics of microphone signals for each focus

position and so is recognized as a “signal correction”. The examination process

is not very time-consuming for a linear focus region, but it will increase the CPU

time quadratically in the case of a 2D focus region, typically with many more

grid points. Furthermore, modelling the exact phase alignment of a real acoustic

source is difficult due to the inherent nonideal nature of propagation characteristics.

A significant drawback of the signal correction is that when extended to a 2D

microphone array it is only applicable to one single dipole with known position

and direction. This technique therefore limits the main objective of a phased array,

which is to localize noise sources.

In this chapter, a beamforming correction to array processing techniques

is presented for identifying dipole sources. The main idea is to modify the

conventional beamforming algorithm source description to account for the dipole

propagation characteristics. This improves the ability of conventional beamforming

for estimating dipole sources and extends the technique of Jordan et al. [89],

yielding a new beamforming algorithm capable of evaluating the true source

location and source power of a distribution of dipoles with known orientation.

This “dipole-beamforming” algorithm is then applied to numerical simulations and

experiments for validation.

We will commence with a theoretical formulation for the far-field sound

field of aeroacoustic sources in Section 7.2. The monopole description is based
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on Sijtsma [133] to be consistent with the array software used in this work,

and the dipole characteristic term is derived. In Section 7.3, two approaches

for dipole correction to conventional beamforming techniques, i.e. through

microphone signals and beamforming algorithm, are described and compared. A

dipole-beamforming algorithm is presented by applying the dipole characteristic

term to the source definition for correction. Section 7.4 validates these two

approaches through numerical simulations and demonstrates the advantages of the

beamforming correction. Following validation some results from the application

of the beamforming correction to dipole source localization of aeolian tones are

presented and discussed in Section 7.5.

7.2 Theoretical Formulation

7.2.1 The monopole source

An ideal point source with uniform directivity (monopole) is assumed to be located

at ξ in a medium with a uniform flow U . The acoustic pressure p(x, t) at the receiver

x satisfies the convective wave equation [133]:

1

c2

(
∂

∂t
+ U · ∇

)2

p(x, t)−∇2p(x, t) = −q(t)δ(x− ξ), (7.1)

where q(t) is the monopole source strength in time domain and δ(x − ξ) is the

Dirac delta function. In the frequency domain, Equation (7.1) transforms into the

convective Helmholtz equation:

1

c2
(iω + U · ∇)2 p(x, ω)−∇2p(x, ω) = −a(ω)δ(x− ξ), (7.2)

where a(ω) is the Fourier transform of q(t).

The solution to Equation (7.1) is

p(x, t) =
−q(t−∆te)

4π
√

(M · r)2 + β2|r|2
, (7.3)

where M = U/c is a vector of mean flow Mach number, r = x−ξ is the propagation

vector from source to receiver, ∆te is the emission time delay:

∆te =
1

cβ2

(
−M · r +

√
(M · r)2 + β2|r|2

)
, (7.4)
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and β2 = 1 − |M |2. The frequency-domain form of Equation (7.3), i.e. the solution

of Equation (7.2), can be expressed as:

p(x, ω) =
−a(ω)e−iω∆te

4π
√

(M · r)2 + β2|r|2
, (7.5)

because ∫ ∞

−∞
p(x, t)e−iωt dt =

e−iω∆te
∫∞
−∞−q(t−∆te)e

−iω(t−∆te) d(t−∆te)

4π
√

(M · r)2 + β2|r|2
. (7.6)

7.2.2 The dipole source

A dipole source can be modelled as a coherent pair of closely placed monopoles q(t)

with opposite phase at a distance l apart. The total source strength is

Ftot = −q(t)
[
δ(ξ)− δ(ξ − l)

]
. (7.7)

If the distance l = |l| is small (i.e. kl < 1), the total source strength simplifies to

Ftot = −∇ ·
[
F (t)δ(ξ)

]
(7.8)

by Taylor expansion, where F (t) = q(t)l is the dipole strength vector. Hence for a

dipole located in a medium with a uniform flow, the convective wave equation (7.1)

becomes:
1

c2

(
∂

∂t
+ U · ∇

)2

p(x, t)−∇2p(x, t) = −∇ ·
[
F (t)δ(r)

]
, (7.9)

and the convective Helmholtz equation in the frequency domain is:

1

c2
(iω + U · ∇)2 p(x, ω)−∇2p(x, ω) = −a(ω)lδ(r). (7.10)

Similar to the solution to Equation (7.1) for a monopole, the solution of Equation

(7.9) for source −∇ ·
[
F (t)δ(r)

]
is:

p(x, t) = −∇ ·

[
F (t−∆te)

4π
√

(M · r)2 + β2|r|2

]
. (7.11)

For a given Mach number vector M and dipole source vector F , we can express the

solution to Equation (7.9) as:

p(x, t) = −∇ ·
[
F (t−∆te)

4πrΘ

]
=

1

4πΘ

[
∇(rΘ)

r2Θ
+
∇(∆te)

r

∂

∂t

]
· F (t−∆te),

(7.12)
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where

Θ =
√

(M · r/r)2 + β2, (7.13)

∇(rΘ) =
(M · r)M + β2r

rΘ
, (7.14)

∇(∆te) =
−M +∇(rΘ)

cβ2
. (7.15)

As we are only interested in far-field sound†, we discard the first term in the bracket,

∇(rΘ)/r2Θ, and obtain the far-field acoustic pressure as:

p(x, t) =
∇(∆te)

4πrΘ
· ∂
∂t

F (t−∆te). (7.16)

The Fourier transform of Equation (7.16) is:

p(x, ω) =
∇(∆te)

4πrΘ
· iωa(ω)le−iω∆te

=
a(ω)e−iω∆te

4πrΘ

[
iωl · ∇(∆te)

]
.

(7.17)

Comparing the above expression with the pressure spectrum of a monopole in

Equation (7.5), we obtain the dipole characteristic term representing the ratio

between dipole and monopole fields as:

DPL = −iωl · ∇(∆te). (7.18)

7.3 Beamforming Algorithm

7.3.1 Conventional beamforming

Following the work of Sijtsma [133], the array processing software stores the

measured pressure amplitude in frequency domain in an N-dimensional vector:

p =
[
p1(f), . . . , pN(f)

]
, (7.19)

where N is the number of array microphones. The cross-power matrix C is

introduced by:

C =
1

2
pp∗, (7.20)

†This assumption requires ωr/c � 1, and so may not be satisfied in many phased array
installations (e.g. in a closed-return wind tunnel). It is possible to extend the formulation so that
the second term in Equation (7.12) is included.
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where the overbar denotes an ensemble average or, in practice, the average over

the Fourier transforms obtained from discrete time blocks. The assumed source

description is put in the “transfer vector” g, i.e., its components gn are the pressure

amplitudes at the microphone location of an ideal source with unit strength. For

the case of a monopole in a medium with uniform flow, g can be obtained from

Equation (7.5) by setting the source strength a(ω) = 1, namely

gn =
−e−iω∆te

4π
√

(M · r)2 + β2|r|2
. (7.21)

The purpose of beamforming is to determine the amplitude a of sources at grid

points. This is done by comparing the measured pressure vector p with the transfer

vector g, for instance through minimization of

J = |p− ag|2. (7.22)

The solution of this minimization problem is:

a =
g∗p

|g|2
, (7.23)

and the source auto-power is:

A =
1

2
|a|2 =

1

2

g∗p

|g|2

(
g∗p

|g|2

)∗

=
g∗Cg

|g|4
. (7.24)

Expression (7.24) is known as conventional beamforming [133].

7.3.2 Signal correction

As mentioned earlier, conventional beamforming usually assumes monopole

sources to enable the minimization solution. Here it is referred to as the

monopole-beamforming (M-Beam) algorithm. There are two approaches to correct

conventional beamforming techniques for dipole source identification. The first

approach is to correct the array microphone signals stored in the cross-power matrix

C before the beamforming procedure, as proposed by Jordan et al. [89]. This

is essentially a “signal correction” rather than a correction to the beamforming

algorithm. The application of this correction is limited for a 2D microphone array
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because it is time consuming, not easily processed by computer (due to nonideal

phase alignment) and restricted to one single fixed dipole source. Nevertheless, the

signal correction method provides a useful validation for the dipole characteristic

term which will be used in a corrected beamforming algorithm for dipoles.

If the source strength of a monopole is a(ω) = 1, we can model a dipole with

two coherent monopoles with the same strength but opposite phase. In this case,

the signal correction for the cross-power matrix C would be

Cmn =
1
2
pmp∗n

DPLmDPL∗
n

, (7.25)

where the dipole correction term DPL is an N-dimensional vector containing the

information of both amplitude and phase for all array microphones, and the suffix

denotes the mth or nth microphone. If the corrected dipole simulation gives the

same source location and source power as the reference monopole simulation, the

correction of Equation (7.25) is validated.

7.3.3 Beamforming correction

The second approach for estimating dipole source power is to correct the

beamforming algorithm itself to account for a dipole source. It is therefore

recognized as the “beamforming correction”, and the corrected algorithm is

referred to here as the dipole-beamforming (D-Beam) algorithm. To implement the

beamforming correction, the transfer vector g for a dipole should be defined by

setting the dipole strength a(ω)l = 1 in Equation (7.17), i.e.

gn =
−e−iω∆te ·DPL

4πrΘl
, (7.26)

and then the beamforming procedure should proceed as normal to represent the true

source location and source power for a dipole. With the dipole signature imprinted

in the source description, the beamforming correction allows the user to find the

true amplitude and location of a suspected dipole.

In principle, it would be possible to determine the most likely orientation and

amplitude of dipoles anywhere on the scanning grid. However, for complex
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source patterns which might be encountered on an aeroacoustic model, iterations

through amplitude and orientation of potential dipoles for each grid point would

be computationally expensive. Such a method might also lead to inaccuracies

due to insufficient signal-to-noise ratio. For the present method, we assume that

the user has some information about likely source orientation and is interested in

determining a more accurate estimate of source location and amplitude. A reference

dipole direction is therefore required as an input parameter when the D-Beam

algorithm is applied. The software divides the region of interest into a number of

grid points, and then scans this region point by point for dipoles in the reference

direction, estimating the source auto-power using Equation (7.24).

7.4 Numerical Simulation

7.4.1 Simulation setup

In this section, numerical simulations are performed to validate the two approaches

mentioned previously. Figure 7.1 shows a candidate dipole source located in a

uniform flow, M = (0.1, 0.0, 0.0), with the dipole distance vector l at arbitrary

directions. In Figure 7.2 two cases are examined with the dipole aligned parallel to

the y- or z-axis, referred to as the Y or Z dipole, respectively. The y-z axes are parallel

and normal to the array plane respectively. The source location ξ and dipole vector

l for these two test cases are listed in Table 7.1, and Figures 7.2(a) and 7.2(b) show

the respective dipole directivity patterns. In each test case, an ideal monopole at the

same location with source strength a(ω) = 1 is also simulated for comparison. As

shown in Table 7.1, the dipole size is chosen to be small, l = 0.002 m, to ensure a

compact source. Since there is no sound radiation (DPL = 0) in the plane normal

to a dipole, an offset of source location ∆ξ = 0.005 m is included in Case 1 to avoid

divide-by-zero errors when applying the dipole correction of Equation (7.25).

The simulation array geometry is identical to that of the microphone array

system described in Section 4.3.2. The use of both the HF and LF arrays allows

estimates over a large frequency range. However, differences in estimates of source

power for the same model at common frequencies can be a problem if the sources
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Figure 7.1: Schematic of the simulation for a dipole source.

(a) Case 1 (b) Case 2

Figure 7.2: Dipole directivities for test cases 1 and 2.

Table 7.1: Source location ξ and dipole vector l for test cases 1 and 2.

Case no. Dipole ξ (m)† l (m)‡

1 Y (0.0, ∆ξ, 0.6) (0.0, ∆l, 0.0)
2 Z (0.0, 0.0, 0.6) (0.0, 0.0, ∆l)

† ∆ξ = 0.005 m.
‡ ∆l = 0.002 m.
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Figure 7.3: Simulated source maps for Case 1: (a) dipole without correction, (b) dipole with
signal correction, (c) reference monopole. HF array, f = 8000 Hz; LF array, f =
2000 Hz. Colour bars are in dB.

are not well modelled. Hence for both simulation and experiment we look at

information from both arrays. The beamforming source maps are generated in 1/3

octave-band frequencies, and the source auto-powers have been converted to SPL

in dB† at a reference distance of 1/
√

4π m from the source [133] and in the dipole

direction if the D-Beam algorithm is applied.

7.4.2 Signal correction

Figures 7.3 and 7.4 show the simulated source maps for Cases 1 and 2 using

the signal correction technique. The top row of the figures shows the dipole as

†20 log10(p/pref), pref = 2× 10−5 Pa.
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Figure 7.4: Simulated source maps for Case 2: (a) dipole without correction, (b) dipole with
signal correction, (c) reference monopole. HF array, f = 8000 Hz; LF array, f =
2000 Hz. Colour bars are in dB.

interpreted by conventional beamforming (M-Beam algorithm), the middle row is

the dipole after signal correction, and the bottom row gives the reference monopole

with conventional beamforming. For brevity, only the results of 8000 Hz and 2000

Hz are shown for the HF and LF arrays, respectively.

For the Y dipole, Figure 7.3 shows that the dipole source is missed at the true

location (marked by an asterisk) by the conventional beamforming because the

phase variation in the radiated sound is entirely different from a monopole in

directions close to the normal of the dipole vector l, i.e., the sign of the acoustic

pressure changes across this normal plane. Instead, the sound is interpreted as

coming from elsewhere on the scan grid. More striking are the dipole source powers
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that are significantly underestimated compared with the reference monopole

simulations. As can be found from the colour bars in Figure 7.3, without correction

the detected peak source powers are 57.6 dB and 46.7 dB for the HF and LF arrays,

respectively, which are about 32 dB and 37 dB lower than those of the reference

monopoles used to construct the dipoles.

Conventional beamforming is able to better detect the source at the original

dipole location for Case 2 (Figure 7.4), where the radiation of the Z dipole has a

phase variation similar to that of a monopole over the area of the arrays. However,

the source powers before correction are still much lower than those of the reference

monopole, which can be largely accounted for by the relatively small value of the

term DPL in the dipole pressure spectrum (7.17). The frequency-dependent DPL

also explains the 20 dB difference between the source powers (without correction)

detected by the HF and LF arrays because of the different chosen frequencies,

8000 Hz and 2000 Hz, respectively.

With the signal correction applied, however, the true source maps for a dipole

are recovered for both Cases 1 and 2, and they agree with those of the reference

monopole in both source pattern and source power, as shown clearly in the middle

and bottom rows of Figures 7.3 and 7.4, respectively. This provides confirmation of

the validity of the dipole correction form (7.25).

Figure 7.5 shows the variation of the peak source power S with 1/3 octave-band

centre frequency f for Cases 1 and 2 for both arrays. For a monopole with a(ω)

independent of frequency, S scales on f because the 1/3-octave bandwidth B varies

linearly with f . Actually, S should increase by 1 dB between two adjacent 1/3

octave-band centre frequencies f1 and f2 because

∆S = 10 log10(B2/B1) = 10 log10(f2/f1) = 10 log10 21/3 = 1 dB, (7.27)

and the corrected estimates (solid lines) show this tendency. However, without

correction, estimates of S (solid squares and circles) vary with f 3 in each case

because the sound power of a dipole scales on ω2 as well as the frequency-dependent

1/3-octave bandwidth B, so that

∆S = 10 log10(f
2
2B2/f

2
1B1) = 10 log10(f

3
2 /f

3
1 ) = 10 log10 2 = 3 dB. (7.28)
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(a) Case 1

(b) Case 2

Figure 7.5: Variation of peak source power S with 1/3 octave-band centre frequency f for
Cases 1 and 2. Dipole without correction: � HF array, • LF array; dipole with
signal correction: � HF array, ◦ LF array; – – – S ∼ f3, —— S ∼ f .

After correction, estimates of S (open squares and circles) vary with frequency as

S ∼ f , which is simply a 1/3-octave bandwidth dependence. The same relationship

is seen for estimates of a monopole with uniform strength. The signal correction

also presents the same values of S at a fixed frequency for the HF and LF arrays,

which is in line with the expectation that the algorithm should be independent of

array geometry.
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7.4.3 Beamforming correction

7.4.3.1 Single source

Figure 7.6: Simulated source maps by the D-Beam algorithm: (a) Case 1 and (b) Case 2. HF
array, f = 8000 Hz; LF array, f = 2000 Hz. Colour bars are in dB.

With the dipole correction term DPL validated by the signal correction method,

we apply the D-Beam algorithm to identify the original dipole source instead of the

corrected monopole source as in the middle rows of Figures 7.3 and 7.4. The effect

of the beamforming correction on the source maps of Cases 1 and 2 is shown in

Figure 7.6. We can see from the corrected algorithm that the main source is correctly

placed at the true source location, though low-level side lobes occur away from the

main source. Note that the microphone arrays now detect very similar peak source

powers S for both dipole orientations (see Table 7.2).

Comparing the source maps of the signal correction (Figures 7.3 and 7.4) and

beamforming correction (Figure 7.6), we see that both techniques are able to recover

the true location of a single dipole. However, the signal correction gives the

amplitude of the constituent monopoles of the dipole, whereas the beamforming

correction directly identifies the amplitude of the dipole. Table 7.3 shows the
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Table 7.2: Simulated peak source power S (dB) by the M-Beam and D-Beam algorithms for
Cases 1 and 2. HF array, f = 8000 Hz; LF array, f = 2000 Hz.

HF array LF array

Case no. Dipole M-Beam D-Beam M-Beam D-Beam

1 Y 57.55 79.11 46.71 61.10
2 Z 78.92 79.12 58.93 61.12

Table 7.3: Comparison of elapsed CPU time (s) between the signal correction (ts) and
beamforming correction (tb). HF array, f = 8000 Hz; LF array, f = 2000 Hz.

HF array LF array

Case no. Dipole ts tb ts tb

1 Y 141.7 21.4 41.6 6.8
2 Z 141.8 21.4 41.4 6.7

elapsed CPU time of the two techniques for Cases 1 and 2 on a PC with an Intel

Pentium 4 processor of 3.4 GHz clock speed and a 1 GByte RAM. The CPU time is

very close in each column of Table 7.3, and it is evident that the signal correction

uses much longer CPU time than the beamforming correction, i.e. ts ∼ 6–7tb,

because the signal correction includes a process of delay-analyze-and-sum while

the beamforming correction processes the data directly using the D-Beam algorithm.

The CPU time varies significantly between the HF and LF arrays due to the different

frequencies used. With an identical frequency bandwidth for both arrays (∆f =

117.2 Hz, see Section 7.5.1), the higher centre frequency of 1/3 octave-band contains

more frequency bands and thus takes longer CPU time to process.

7.4.3.2 Multiple sources

One advantage of beamforming correction over signal correction is that it can be

used in the case of multiple dipoles. The application of the D-Beam algorithm to

simulated multiple sources of 2 Y dipoles in the flow direction and 3 Z dipoles in

a triangle is shown in Figure 7.7. At low frequencies the source lobes of multiple

dipoles are likely to overlap with one another particularly for the HF array which
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Figure 7.7: Simulated multiple dipole by the D-Beam algorithm: (a) 2 Y (0, 1, 0) dipoles
located at (−0.1, 0.0) and (0.1, 0.0); (b) 3 Z (0, 0, 1) dipoles located at (0.0, 0.1),
(−0.1,−0.1) and (0.1,−0.1). HF array, f = 12500 Hz; LF array, f = 4000 Hz.
Colour bars are in dB.

has a worse resolution. Hence the frequencies have been increased to 12500 Hz and

4000 Hz for the HF and LF arrays, respectively to achieve better resolution so that

dipole sources at different locations can be clearly isolated. The source strength

is set as al = 0.002 for all dipoles. As can be observed in Figure 7.7, after the

beamforming correction each dipole source is detected at the simulated location for

all cases. This proves that the D-Beam algorithm is capable of localizing multiple

dipoles in spite of different dipole directions, source arrangements and microphone

arrays, and therefore it should be of general use in practice.

7.5 Experiment

7.5.1 Experimental setup

A series of experiments were conducted in the low-speed Markham wind tunnel

located at CUED to test the performance of the D-Beam algorithm. Figure 7.8



7.5 EXPERIMENT 171

(a) Z Dipole (b) Y Dipole

Figure 7.8: Experimental setup for aeolian-tone dipoles in two different directions: Z (0, 0, 1)
and Y (0, 1, 0).

illustrates the experimental setup of the wind tunnel, the phased microphone arrays

and a test wire with supports. The test wire was 1.5 mm in diameter and aligned

perpendicular to the flow in order to generate an aeolian tone, representing a

realistic aeroacoustic dipole source. Acoustic measurements were performed at

free-stream flow velocities, U = 20, 40 m/s, to obtain aeolian-tone dipole sound

at different peak frequencies. The wire was orientated to hopefully obtain dipoles

in the Z- and Y-directions as shown in Table 7.4. The “Y dipole” configuration was

Table 7.4: Dipoles in two different directions.

Coordinates of wire centre (m)

Dipole Direction x y z

Z (0, 0, 1) 0.075 0.003 0.60
Y (0, 1, 0) −0.005 0.465 0.60
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moved to the side to provide a better view for the microphone arrays. The support

structure included two support rods 10 cm apart and one or two support plates, and

was mounted to the tunnel ceiling or side wall.

Measurements were made with both the HF and LF arrays at sampling frequency

of 120 kHz or 30 kHz, respectively. Both arrays contain 48 microphones and are flush

mounted into the rigid tunnel floor. In the post-processing, the time-domain signals

were broken down into 1024 (HF array) or 256 (LF array) data blocks, and each block

was Fourier transformed, resulting in frequency-domain signals with bandwidth

∆f = 117.2 Hz for each array. Narrow-band acoustic beamforming scans were

performed to determine source auto-powers as described in Section 7.3. Both

monopole (M-Beam) and dipole (D-Beam) source descriptions were examined in

each case. For each experiment, a horizontal scan plane was used which intersected

the test wire at the midpoint. Finally, source maps were generated by summing the

narrow-band data to 1/3 octave-band data, with source auto-powers shown as SPL

(dB) at a reference distance of 1/
√

4πm and a reference dipole direction if applicable.

7.5.2 Noise spectra

Cross spectra between a pair of microphones are shown in Figure 7.9 for each

experimental case together with the noise generated by the support (without the

wire) for comparison. Microphones used for the cross spectra are marked by circles

in Figures 7.8(a) and 7.8(b) for each array. The aeolian tones are clearly audible

around 6000 Hz for the HF array (U = 40 m/s) and 3000 Hz for the LF array

(U = 20 m/s), corresponding to a Strouhal number ∼ 0.225. As the spectral

peaks span a range of frequencies, 1/3-octave frequency bands were used for

beamforming source maps to capture the total acoustic energy of the aeolian tone. In

this case, the centre frequencies of 6300 Hz (HF array) and 3150 Hz (LF array) were

selected because they cover the frequency bands of 5613–7072 Hz and 2806–3536 Hz,

respectively, which are sufficiently large for the spectral peaks of interest.
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(a) HF array, U = 40 m/s (b) LF array, U = 20 m/s

Figure 7.9: Measured cross spectra for dipoles in two different directions: Z (0, 0, 1) and
Y (0, 1, 0) with measured cross spectra of overhead and side supports for
comparison. ∆f = 117.2 Hz.

7.5.3 Beamforming correction

7.5.3.1 Simulation

Theoretical simulations were first carried out to examine the performance of the

proposed beamforming correction on identifying distributed aeolian-tone dipoles,

and to provide a baseline for comparison with experimental results. In Section 4.3.4

we used this method to validate the prediction model for surface roughness noise by

comparing the measured and simulated source powers. In this work, however, we

are not concerned about the source power itself. Instead, we compare the increase

(∆Ss) in the estimated peak source power S from the M-Beam algorithm to the
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Figure 7.10: Comparison of simulated source maps by the M-Beam and D-Beam algorithms
for dipoles in two different directions: (a) Z (0, 0, 1) and (b) Y (0, 1, 0). HF array,
f = 6300 Hz. Colour bars are in dB.

D-Beam algorithm. To implement the simulation for the Z and Y dipoles, we assume

that 11 identical incoherent dipoles are uniformly distributed in the direction of

the wire, and the same value of a(ω) is used as the input source strength for both

algorithms and both arrays.

Figure 7.10 illustrates the simulated source maps at 6300 Hz by the HF array

for the Z and Y dipoles, and the comparison between the M-Beam and D-Beam

algorithms. The colour bar on the right restricts the SPL data within the range of

0–15 dB, and the source maps of different dipoles and algorithms are shown on

identical scales for comparison. Support structures are also sketched on the source

maps. Note that since a(ω) has been set equal to some value, these simulated

SPL data do not represent the true source powers of the aeolian-tone dipoles and

are merely meaningful as relative levels to show the effect of the beamforming

correction. In fact, both the M-Beam and D-Beam algorithms detect the true location

of the main source for the distributed dipoles. However, only the D-Beam algorithm

correctly identifies strength of the Z and Y dipoles, as both dipoles have the similar
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(a) Z dipole

(b) Y dipole

Figure 7.11: Variation of simulated peak source power S with 1/3 octave-band centre
frequency f for the Z and Y dipoles. M-Beam algorithm: � HF array, • LF
array; D-Beam algorithm: � HF array, ◦ LF array; – – –, —— S ∼ f3.

source powers. The M-Beam algorithm appears to substantially underestimate

source strength of the Y dipoles, as anticipated by the earlier simulation (Figure 7.3).

Figures 7.11(a) and 7.11(b) show the variation of S with 1/3 octave-band centre

frequency f . As expected from Equation (7.28), the simulated S of the Z and Y

dipoles varies as f 3, independently of the different arrays and algorithms used.

After applying the beamforming correction, the estimated peak source powers S
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by the HF and LF arrays almost coincide with one another, consistent with the

tendency of the ideal individual sources as in Figure 7.5. For the Z dipole, the effect

of the beamforming correction is generally small, i.e., ∆Ss ≈ 2.2 dB for the LF array

and nearly negligible for the HF array (see Table 7.5). However for the Y dipole,

the values of S increase significantly from the M-Beam algorithm to the D-Beam

algorithm by about 7.2 dB (LF array) and 4.6 dB (HF array). This is because for

the Z dipole the variation of phase over the microphones is just due to propagation

distance and is correctly captured by the M-Beam algorithm. However, for the Y

dipole there is an additional phase change due to the dipole directivity.

7.5.3.2 Measurement

Figure 7.12 illustrates the measured source maps at 6300 Hz by the HF array for

the Z and Y dipoles. The source powers of the aeolian-tone dipoles identified

by the M-Beam and D-Beam algorithms are shown in the SPL range of 65–80 dB.

Figure 7.12: Comparison of measured source maps by the M-Beam and D-Beam algorithms
for dipoles in two different directions: (a) Z (0, 0, 1) and (b) Y (0, 1, 0). HF array,
f = 6300 Hz. Colour bars are in dB.
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Comparing Figures 7.10 and 7.12 we see that the simulated and measured source

maps show very similar source patterns and similar effects of the beamforming

correction. Table 7.5 compares the estimated peak source power S of the two

dipoles, as recorded by both arrays at 6300 Hz and 3150 Hz. For each dipole

orientation, the value of S is given for both the M-Beam and D-Beam algorithms.

In each case, the M-Beam algorithm shows a lower estimate of source power. The

differences between the M-Beam and D-Beam algorithm are also much greater for

the Y dipole, as seen in simulation. In addition, the D-Beam algorithm correctly

identifies the wire as producing very similar sound power in both orientations.

Corrected source maps are also shown in the right column of Figure 7.12.

Table 7.5: Peak source power S (dB) of measurement and simulation for the Z and Y dipoles.
(a) HF array, f = 6300 Hz; (b) LF array, f = 3150 Hz.

(a) Measurement Simulation

Dipole M-Beam D-Beam ∆Sm ∆Ss |∆Sm −∆Ss|

Z 78.31 78.57 0.26 0.24 0.02
Y 73.59 78.32 4.73 4.57 0.16

(b) Measurement Simulation

Dipole M-Beam D-Beam ∆Sm ∆Ss |∆Sm −∆Ss|

Z 51.73 53.92 2.19 2.16 0.03
Y 48.01 55.18 7.17 7.22 0.05

The difference in measured peak source powers between the M-Beam and

D-Beam algorithms is shown in Table 7.5 as ∆Sm. Due to the source directivity, the Y

dipole shows larger ∆Sm because much of its sound radiation is missed without the

beamforming correction. In Table 7.5 are also shown the corresponding values of

∆Ss obtained from a simplified simulation of the experimental setup. This enables

the evaluation of the difference |∆Sm −∆Ss|. It indicates that ∆Sm agrees with ∆Ss

fairly well for all cases with the largest discrepancy of 0.16 dB occurring at the Y

dipole by the HF array. This suggests that the modelling of the aeolian tones from

the wire as a series of incoherent dipoles is realistic and provides a preliminary

validation of the D-Beam algorithm for an experimental dipole source.
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7.6 Summary

It has been shown that conventional beamforming techniques can misinterpret the

microphone array measurement for a simple dipole due to the inherent monopole

assumption. A correction for the phase differences in microphone signals was

presented by Jordan et al. [89] and it displayed the capability to recover the source

location of a single dipole in the resulting source map. In this chapter, we present

a method of modifying the source transfer vector to search the scanning plane

for dipole sources. The resulting algorithm is able to identify the source location

and amplitude of dipoles with a suspected orientation. This method extends the

capability of the “signal correction” by Jordan et al. [89] to deal with multiple dipoles

for 2D microphone arrays.

In simulations of dipoles normal to the flow, the dipole-beamforming algorithm

recovered the true source location and amplitude. For a point dipole, the use

of a dedicated dipole beamforming algorithm can lead to large increases in

source estimates. For simulations with distributed dipole sources and comparable

measurements of aeolian tones, the improvement in estimates of source power with

the D-Beam algorithm was less marked. However, the implementation of the new

algorithm did allow recovery of the same source strength from different orientations

of the same aeolian tone.

Whilst both simulations and measurements have validated the capability of

the D-Beam algorithm to improve conventional techniques for identifying dipole

sources, the present implementation requires specification of the dipole direction. A

potential improvement would be to iterate through different dipole orientations at

each point on the scanning grid. However, in many aeroacoustic experiments it may

be possible to readily identify the likely dipole orientations by using knowledge of

the source mechanisms. In such cases, it is hoped that more accurate estimates of

source amplitude can be determined with this method.
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Conclusions and Future Work

8.1 Summary and Conclusions

THE noise from aircraft has been a significant contributor to the considerable

environmental problem of noise pollution that impacts on the population in

modern society, and has drawn worldwide concerns especially due to the increasing

growth of civil transport aircraft since the 1960s.

With the significant reduction of jet-engine noise levels in recent years, airframe

noise has been highlighted, particularly during landing approach when some

geometrically complex structural features are exposed to the flow (i.e. the

“dirty” configuration). These complex components, e.g. landing gears, slats and

flaps, have been noted to be the dominant sources of airframe noise on modern

commercial aircraft and have received sufficient concerns in terms of the noise

source mechanisms and noise reduction technologies.

Other sources may also contribute to the airframe noise of aircraft flying in the

“clean” configuration, for example the trailing edge and panel vibration. In this

thesis, however, we have carried out an investigation into a previously discounted

noise source arising from the rough surfaces on aircraft wings and fuselages, as part

of the SAI project. The aim was to understand better the noise source mechanisms

and to predict the far-field sound radiation produced by surface roughness.

Through the literature review in Chapter 2, we divided the source mechanisms

of surface roughness noise into two alternative categories: the sound scattering
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mechanism (incoherent and coherent) and the drag dipole mechanism, according

to which boundary-layer velocity profile region the roughness elements lie in. In

the course of the thesis, we focused on the incoherent sound scattering mechanism

for roughness elements confined in the logarithmic layer since previous studies on

this mechanism are relatively systematic and mature.

Sound Scattering Mechanism

Theoretical modelling: First the theoretical modelling of the incoherent

scattering mechanism was based on Howe’s diffraction theory [77] of turbulent

boundary-layer roughness noise, which has been extended to evaluate the

integral of the far-field roughness noise spectrum by means of direct numerical

integration instead of asymptotic approximation. Hence we obtained the

prediction model by using previous empirical models [25, 26, 31, 43, 140]

of smooth-wall wavenumber-frequency spectrum and considering the effects of

roughness-enhanced turbulent fluctuations. The numerically predicted roughness

noise spectra have shown encouraging agreement with Howe’s empirical

model [82] and the experimental data by Hersh [71], which provided preliminary

validation of the prediction model.

Experimental validation: We then conducted acoustic measurements for the

radiated sound from two rough plates in an open-jet wind tunnel to experimentally

validate the prediction model. The measured noise spectra of the rough plates

were above that of a smooth plate in 1–2.5 kHz frequency, and exhibited reasonable

amount of agreement with the predicted level. Phased microphone arrays were

also applied to the measurement and simulation of surface roughness noise. The

source maps measured at three streamwise locations have demonstrated the dipole

directivity. Higher source strengths were observed on the rough plates which

also enhanced the TE noise. The prediction model was used to describe the

strength of a distribution of incoherent dipoles and to simulate the sound detected

by the microphone array. Source maps of measurement and simulation have

exhibited satisfactory similarities in both source pattern and source strength. All

these observations have confirmed the dipole nature of surface roughness noise
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and provided further form of validation for the prediction model. It was also

shown, however, that there is scope to improve the prediction model in terms

of the somewhat underestimated streamwise gradient of source strength and the

overestimated SPL at high frequencies. Moreover, hot-wire measurement has

determined the suitable value of wake strength which gave the best fit to measured

data and has confirmed the validity of the skin friction formula of Mills and

Hang [106] for the prediction model.

Numerical prediction and analysis: The next step was to apply the validated model

to a Boeing-757 sized aircraft wing and the SAI conceptual design SAX-40 with

idealized levels of surface roughness. Numerical predictions for both aircraft have

shown that the spectral level of roughness noise could exceed that of TE noise at

sufficiently high frequencies resulting in the higher roughness noise OASPL, too,

and that TE noise was somewhat enhanced as an indirect effect of surface roughness.

The parametric studies indicated that roughness height and roughness density are

two important parameters having significant effects on roughness noise with the

former a more dominant one. The directivity of roughness noise was observed to

vary over different roughness levels. In addition, we presented two categories of

limiting roughness for SAX-40, one sparse roughness element and the other more

uniformly distributed. We showed that provided the surface roughness was less

than each of these surface roughness noise would not prevent SAX-40 from meeting

its aggressive noise target.

The numerical prediction using the validated theoretical model has demonstrated

the potential importance of the noise due to surface roughness as well as its

indirect effect of enhancement on the corresponding TE noise. This implies that

surface roughness could contribute to the difference in noise levels between the

TE noise and the airfoil self noise for current jet aircraft in “clean” configurations,

as illustrated in Figure 1.5. Explaining that “gap” was a major motivation of the

research carried out in this thesis. This highlights the need to consider carefully

the contribution of surface roughness to aircraft noise, which has been previously

overlooked, in the design of a low-noise airframe.
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Drag Dipole Mechanism

Further to the work based on the incoherent scattering mechanism, we also

investigated the drag dipole mechanism and extended it to consider the noise

resulting from the unsteady drag on very large roughness elements that protrude

into the outer region of the boundary-layer velocity profile. The work was

motivated by the analytical model of Howe et al. [83] and the observations of

Acarlar and Smith [1]. We first modified Howe et al.’s sphere model of lift and drag

fluctuations and obtained the corresponding wall-mounted hemisphere model.

We then applied the unsteady drag on the hemispherical roughness elements to

determine the far-field radiated sound. The preliminary comparison of noise spectra

between the drag dipole mechanism and the sound scattering mechanism has

implied that the drag dipole noise from very large roughness elements has the

potential to become a source as significant as the scattering noise.

The relative significance of the two source mechanisms of surface roughness noise,

i.e. sound scattering and drag dipole, depends on the boundary-layer velocity

profile region in which the roughness elements are contained. For roughness

elements not protruding beyond the logarithmic layer, the drag dipole noise is

generated by enhanced shear stress fluctuations on the wall, and it has been

confirmed that in this case surface roughness noise is dominated by the sound

scattering mechanism. However, for very large roughness elements that protrude

far beyond the logarithmic layer, unsteady drag is principally due to the fluctuation

in surface pressures, and the drag dipole noise could be comparable to or even

higher than (if the nominally steady flow is replaced by a turbulent flow in the

hemisphere model) the noise from sound scattering.

Dipole Beamforming Correction

The remaining work of the thesis was on the beamforming correction for identifying

dipoles through microphone array measurements. Jordan et al. [89] have shown

that conventional beamforming techniques can misinterpret array measurements
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when applied directly to reconstruct dipole sources due to the inherent monopole

assumption, and they proposed a correction technique for microphone signals to

recover the source location of a single dipole.

In this work, we extended the signal correction technique to deal with multiple

dipoles for 2D microphone arrays, and developed a new D-Beam algorithm by

modifying the source transfer vector which is able to identify both source location

and source amplitude of dipoles in a suspected orientation. Numerical simulations

of dipoles normal to the flow have validated the capability of the D-Beam algorithm

to recover the true dipole sources. Measurements of distributed aeolian-tone dipoles

have shown the improvement of array performance in estimates of source power,

though less remarkable, after applying the D-Beam algorithm.

The present D-Beam algorithm requires the specification of a reference dipole

direction and so it is applicable to a distribution of dipoles yet in a uniform

orientation. However, for a complex aeroacoustic system in practice combined

with various source types (for example, monopoles and dipoles, or dipoles with

different components), the indirect approach of theoretically simulating the source

distribution and then comparing the predicted source maps with experimental

results, as described in Sections 4.3.4 and 4.3.5, is recommended in the data

processing.

8.2 Suggestions for Future Work

In order to improve the theoretical models and obtain more accurate predictions,

further investigations of interest are recommended as follows:

Sound Scattering Mechanism

• Due to practical limits on experimental work, the roughness noise spectra

were obtained in a very narrow range of flow velocity for only two roughness

conditions. A detailed investigation should be carried out into the effects of

the parameters U,R, σ on roughness noise spectra to enable a scaling study
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with nondimensional variables. An anechoic chamber with jet facility would

be ideal for such measurements as it provides very quiet background noise.

Far-field sound from the whole rough region should be measured to reduce

unnecessary error when comparing prediction and experiment.

• The prediction model could be improved in accuracy particularly at high

frequencies, and the underestimated streamwise gradient of roughness noise

source strengths over a flat plate should be corrected.

• Computational Fluid Dynamics (CFD) simulations of the turbulent flow field

over a rough wall using DNS would improve the understanding of the

noise source mechanisms and provide another approach to validating the

prediction model. Consideration of roughness elements in various shapes

(sphere, cylinder, cube, pyramid, etc.), which are more realistic for the surface

irregularities on aircraft wings and fuselages, would also be made possible by

the CFD simulation.

• Investigate the effects of aircraft configuration when applying the prediction

model to current aircraft and SAX-40, for example, the changes in boundary

layer development (i.e. uτ and δ) due to the existence of surface curvature or

other airframe components, e.g. high-lift devices, engine nacelles.

Drag Dipole Mechanism

• The wall-mounted hemisphere model should be experimentally validated by

towing tank measurement for the lift and drag fluctuations on the hemisphere

and acoustic measurement for the far-field radiated sound. CFD simulations

would provide numerical data of pressure fluctuations due to vortex shedding

from the roughness element for validation of the hemisphere model.

• The analytical sphere/hemisphere model would need to be refined if it is

also desire to incorporate modifications of the flow that occur when the

sphere/hemisphere is located in a mean turbulent stream [84], and also in

applications where the influence of a neighbouring sidewall (for instance a

wind tunnel) is important [83].
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• For the hemisphere model, the speculation that the vorticity counteraction

between the standing vortex and hairpin vortices could reduce the net

circulation around the hemisphere and thus result in negligible unsteady lift

at large time should be verified by including the standing vortex in the model.

• Alleviation of the high-frequency oscillation in evaluation of the drag

spectrum would improve the accuracy of numerical prediction.

• Consider more test cases for the drag dipole noise prediction.

Dipole Beamforming Correction

• A potential step beyond this work would be to iterate through a range of

dipole orientations to identify the most likely direction of dipoles anywhere

on the scanning grid, rather than specifying the reference dipole direction in

the D-Beam algorithm. However, this optimization is generally tricky and

time-consuming, especially if a 3D orientation is proposed.

• The present D-Beam algorithm is not applicable to out-of-flow phased array

measurements for an open jet. When shear-layer corrections are made,

sound transmission is calculated for different Mach numbers. However, the

directivity pattern of dipoles is dependent on Mach numbers, and thus the

application of the D-Beam algorithm in this case would produce a lot of

ambiguity. A more advanced algorithm capable of identifying aeroacoustic

dipoles in an open jet should be developed to enable a direct comparison

between measurement and simulation for the array results in Section 4.3.

• Experiments for a realistic individual dipole instead of distributed dipoles

would provide a straightforward validation of the D-Beam algorithm in

recovering dipole source strengths.



186 CHAPTER 8: CONCLUSIONS AND FUTURE WORK



Appendix A

Empirical Models for Smooth-Wall
Wavenumber-Frequency Spectrum

The wavenumber-frequency spectrum Φ̃p has been used in the prediction model

for the far-field radiated roughness noise. In this appendix, we list several

representative empirical models for the wavenumber-frequency spectrum of

turbulent boundary-layer pressures on a smooth wall. This is based on the model

comparison by Graham [63], but only the formulae and constant values are given

for ease of reference. The original notations are accordingly altered to be consistent

with the definitions of this thesis.

A.1 Empirical Models

The Corcos Model

Φ̃p(κ, ω) =
4α1α3[

α2
1 + (Ucκ1/ω − 1)2

][
α2

3 + U2
c κ

2
3 /ω

2
] , (A.1)

where α1 and α3 are the parameters chosen to yield the best agreement with

experiment. Various values for α1 and α3 are given in the literature; herein α1 = 0.1

and α3 = 0.77 are used as suggested by Graham [63].

The Efimtsov Model

Φ̃p(κ, ω) =
ω2

U2
c

4Λ1Λ3[
1 + Λ2

1 (κ1 − ω/Uc)2
][

1 + Λ2
3κ

2
3

] , (A.2)
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where the correlation lengths,

Λ1 = Uc/|ω|α1 and Λ3 = Uc/|ω|α3 (A.3)

are given by the empirical expressions:

Λ1

δ
=

[(
a1Sh

Uc/uτ

)2

+
a2

2

Sh2 + (a2/a3)2

]−1/2

, (A.4a)

Λ3

δ
=

[(
a4Sh

Uc/uτ

)2

+
a2

5

Sh2 + (a5/a6)2

]−1/2

, M < 0.75, (A.4b)

Λ3

δ
=

[(
a4Sh

Uc/uτ

)2

+ a2
7

]−1/2

, M > 0.9. (A.4c)

In Equations (A.4), M is the free-stream Mach number, and Sh = ωδ/uτ is the

Strouhal number. The empirical constants a1–a7 are, respectively,

a1 = 0.1, a2 = 72.8, a3 = 1.54, a4 = 0.77,

a5 = 548, a6 = 13.5, a7 = 5.66.
(A.5)

Values for Λ3 when 0.75 < M < 0.9 are not given; herein interpolation is used if

necessary.

The Smol’yakov and Tkachenko Model

Φ̃p(κ, ω) = 0.974A(ω)h(ω)
[
F (κ, ω)−∆F (κ, ω)

]
, (A.6)

where

A(ω) = 0.124

[
1− Uc

4ωδ∗
+

(
Uc

4ωδ∗

)2
]1/2

, (A.7a)

h(ω) =

[
1− m1A

6.515
√
G

]−1

, (A.7b)

m1 =
1 + A2

1.025 + A2
, G = 1 + A2 − 1.005m1, (A.7c)

F (κ, ω) =

[
A2 +

(
1− κ1Uc

ω

)2

+

(
κ3Uc

6.45ω

)2
]−3/2

, (A.7d)

∆F (κ, ω) = 0.995

[
1 + A2 +

1.005

m1

{(
m1 −

κ1Uc

ω

)2

+

(
κ3Uc

ω

)2

−m2
1

}]−3/2

. (A.7e)

Here δ∗ is the displacement boundary-layer thickness, taken as δ∗ = δ/8.
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The Ffowcs Williams Model

Φ̃p(κ, ω) =

(
Uc|κ|
ω

)2
4α1α3[

α2
1 + (Ucκ1/ω − 1)2

][
α2

3 + U2
c κ

2
3 /ω

2
] , (A.8)

with the same values for α1 and α3 as in the Corcos model.

The Chase I Model

Φ̃p(κ, ω) =
ρ2

0ω
2u3

τ

U2
c Φ(ω)

(
CMκ

2
1[

K2
+ + (bMδ)−2

]5/2
+

CT |κ|2[
K2

+ + (bT δ)−2
]5/2

)
, (A.9)

where

K2
+ =

(ω − Ucκ1)
2

h2u2
τ

+ |κ|2, (A.10a)

Φ(ω)

2π
=

2πhρ2
0u

4
τ

3ω (1 + µ2)

(
CMFM + CTFT

)
, (A.10b)

FM =
1 + µ2α2

M + µ4(α2
M − 1)[

α2
M + µ2(α2

M − 1)
]3/2

, (A.10c)

FT =
1 + α2

T + µ2(3α2
T − 1) + 2µ4(α2

T − 1)[
α2

T + µ2(α2
T − 1)

]3/2
, (A.10d)

α2
Mor T = 1 + (Uc/bMor T ωδ)

2, (A.10e)

µ = huτ/Uc. (A.10f)

Based on Chase’s recommendations, the empirical constants have values as below,

CM = 0.0745, CT = 0.0475,

bM = 0.756, bT = 0.378, h = 3.0.
(A.11)

The Chase II Model

Φ̃p(κ, ω) =
ρ2

0ω
2u3

τ

U2
c Φ(ω)

[
K2

+ + (bδ)−2
]5/2

(
CMκ

2
1 + CT |κ|2

K2
+ + (bδ)−2

|κ|2 + (bδ)−2

)
, (A.12)
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where

K2
+ =

(ω − Ucκ1)
2

h2u2
τ

+ |κ|2, (A.13a)

Φ(ω)

2π
=

2πhρ2
0u

4
τ

3ω (1 + µ2)

(
CMFM + CTFT

)
, (A.13b)

FM =
1 + µ2α2 + µ4(α2 − 1)[
α2 + µ2(α2 − 1)

]3/2
, (A.13c)

FT =
3(1 + µ2)(1 + α2)

2α3
, (A.13d)

α2 = 1 + (Uc/bωδ)
2, (A.13e)

µ = huτ/Uc. (A.13f)

The recommended empirical constant values are

b = 0.75, h = 3.0,

hCM = 0.466, hCT = 0.014.
(A.14)

A.2 Prediction

Several representative empirical models to predict the wavenumber-frequency

spectrum have been briefly described in Section A.1. In Figures A.1 and A.2 are

shown the predictions for streamwise wavenumber-frequency spectra Φ̃p(κ1, 0, ω)

and spanwise wavenumber-frequency Φ̃p(0, κ3, ω), for Strouhal numbers (Sh =

ωδ/uτ ) 248 and 24.8, respectively. All dimensional variables in these models can be

non-dimensionalized as functions of Uc κ/ω, Sh, Uc/uτ , and following Graham [63]

we have employed

Uc

uτ

= 9.55Sh1/5

[
1 + (6.38× 10−4Sh)2

1 + (3.98× 10−3Sh)4

]1/10

(A.15)

which is the empirical fit obtained by Efimtsov [43]. The assessments of the

empirical models based on Figures A.1 and A.2 can be found in Graham [63] and

Ahn [4] and will not be repeated here.
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(a) Sh = 248

(b) Sh = 24.8

Figure A.1: Predicted wavenumber-frequency spectra that are plotted against streamwise
wavenumber κ1 non-dimensionalized on the convective wavenumber ω/Uc,
and thus peak round one.
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(a) Sh = 248

(b) Sh = 24.8

Figure A.2: Predicted spanwise wavenumber-frequency spectra.



Appendix B

Discrete Power Spectral Density

In an acoustic experiment, the signal p(t) is measured for a finite time interval T ,

and sampled at N different times t = n∆, where n = 0, 1, . . . , N − 1 and the time lag

∆ = T/N . In this case, a discrete Fourier transform of the signal is applied and can

be defined by [39]:

p̂m =
1

N

N−1∑
n=0

p(n∆)e−2πimn/N

=
1

N

N−1∑
l=0

p[(n+ l)∆]e−2πim(n+l)/N ,

(B.1)

where p̂m is the frequency spectrum of p(t).

The discrete auto-correlation of the signal is

P (l∆) =
〈
p(n∆)p[(n+ l)∆]

〉
, (B.2)

and the discrete power spectral density is defined as the discrete Fourier transform

of P (l∆),

P̂m =
1

N

N−1∑
l=0

P (l∆)e−2πiml/N . (B.3)

P (l∆) can be reconstructed from the inverse Fourier transform

P (l∆) =
N−1∑
m=0

P̂m e
2πiml/N , (B.4)

and we can see that P̂m means the power in the mth frequency interval.
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The power spectral density P̂m can be related directly to the Fourier transform

of the signal. The ensemble average of the discrete Fourier transforms of p(n∆) and

p[(n+ l)∆] is given by

〈 p̂m p̂m′〉 =
1

N2

N−1∑
n=0

N−1∑
l=0

〈
p(n∆)p[(n+ l)∆]

〉
e−2πimn/Ne−2πim′(n+l)/N

=
1

N

N−1∑
l=0

P (l∆)e−2πim′l/N · 1

N

N−1∑
n=0

e−2πi(m+m′)n/N .

The double sum in Equation (B.5) can be simplified to

〈 p̂m p̂m′〉 = P̂m′ δ(m+m′), (B.5)

because
1

N

N−1∑
n=0

e−2πi(m+m′)n/N =

{
0 if m 6= −m′,

1 if m = −m′.
(B.6)

Hence 〈 p̂m p̂m′〉 = 0 if m 6= −m′. When m = −m′, Equation (B.5) becomes

〈 p̂m p̂−m〉 = P̂−m. (B.7)

It is apparent from Equations (B.1) and (B.3) that

p̂−m = p̂∗m, (B.8)

and that

P̂−m = P̂m. (B.9)

Combining these relationships (B.7–B.9), we obtain

|p̂m|2 = P̂m, (B.10)

and we can confirm that the discrete power spectral density P̂m has the dimension

of power Pa2, unlike the dimension Pa2 Hz−1 for the general power spectral density

P̂ (ω) based on the continuous Fourier transform.
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Derivation of Skin Friction Coefficient
from Hot-Wire Measurement

Figure C.1: Schematic of the derivation of c̄f from measured mean velocity profiles at two
stations along a flat plate.

As shown in Figure C.1, a turbulent boundary layer is developing on a flat plate.

The flow is assumed to be inviscid and incompressible with free-stream velocity U .

The mean velocity profiles u1(y) and u2(y) in the boundary layer are measured at

two stations 1 and 2 at a distance L apart. We take a control volume V of L× h that

encloses the two measurement stations at the front and rear boundaries S1 and S2.
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Applying momentum conservation to the control volume, we have∫
V

∂(ρv)

∂t
dV︸ ︷︷ ︸

Momentum Rate

+

∮
S

(ρv)(v · dS)︸ ︷︷ ︸
Momentum Flux

= −
∮

S

p dS −Drag︸ ︷︷ ︸
Σ Force

. (C.1)

On the left-hand side of the above equation, the first integral denotes the rate

of momentum addition in volume V , and the second integral is the momentum

flux across control surfaces S1–S4. If we consider the mean flow in Equation (C.1),

the first term of momentum becomes zero; and assuming incompressible flow the

second term is simplified to∮
S

ρ0v̄ (v̄ · dS) +

∮
S

ρ0v′ (v′︸ ︷︷ ︸
Reynolds stress

· dS), (C.2)

in which the momentum flux due to the sufficiently small Reynolds stress

fluctuation ρ0v′v′ can be discarded.

In the terms of force acting on the control surfaces, the surface integral vanishes

because the mean pressure is p∞ on S1–S4, and the drag is due to the skin friction on

S3, i.e.

Drag =

∫
S3

τw dS =
1

2
ρ0U

2

∫
S3

cf dS, (C.3)

where cf is the local skin friction coefficient at a position on S3. Therefore

Equation (C.1) simplifies to∮
S

ρ0v̄ (v̄ · dS) = −1

2
ρ0U

2 c̄fL, (C.4)

where c̄f is the average skin friction coefficient over the length of S3 and is to be

derived in this appendix.

In the x-direction, we take v̄ = (u, 0, 0) and Equation (C.4) can be expressed as

ρ0

(∫ h

0

u2
2 dy −

∫ h

0

u2
1 dy

)
︸ ︷︷ ︸

S1, S2

+ ṁU︸︷︷︸
S4

= −1

2
ρ0U

2 c̄fL, (C.5)

where u1 and u2 denote the mean velocity profiles at Stations 1 and 2, respectively.

On the left-hand side of Equation (C.5), the first term describes the momentum flux

through the front and rear control surfaces S1 and S2; and the second term is for the
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momentum flux through the control surface S4, in which the mass flux is

ṁ = ρ0

(∫ h

0

u1 dy −
∫ h

0

u2 dy

)
. (C.6)

For simplicity, we make the usual approximation that ∂p̄/∂y = 0 across the

boundary layer and constant mean velocity beyond y = δ. Therefore the integrals

of u2 and u over the height of the control surfaces S1 and S2 split into two parts:∫ h

0

u2 dy =

∫ δ

0

u2(y) dy + U2(h− δ), (C.7a)∫ h

0

u dy =

∫ δ

0

u(y) dy + U(h− δ). (C.7b)

In the above integrals u(y) denotes the mean velocity profile in the boundary layer

and δ is the boundary-layer thickness, both of which can be obtained by experiment.

The height of the control volume is recommended to be sufficiently larger than δ.

In the hot-wire measurement carried out in this research (Section 4.4.2), the value

h > 3δ is used.

From Equations (C.5–C.7), the average skin friction coefficient c̄f between

Stations 1 and 2 can be derived, provided that the mean velocity profiles

u1(y) and u2(y) (and hence δ1 and δ2) have been determined through the

hot-wire measurement. This method is then applied to the experimental data

in Section 4.4.2.2 to compare with c̄f predicted by different formulae of skin

friction [106, 124].
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Appendix D

Derivations Related to the
Wall-Mounted Hemisphere Model

D.1 The Image-Vortex Effects

For the vortex shedding from a wall-mounted hemisphere, the effects of the image

vortex need to be considered. The image vortex is identical to the original vortex

in strength but opposite in orientation, and we will use the prime ′ to denote the

notations of the image vortex.

Figure D.1 illustrates the nth vortex loop and its image when separating from

the surface of the hemisphere. We can see from Figure D.1 that the circulation Γ ,

the vorticity ωn and the y-coordinate of the loop are in opposite directions for the

original vortex and the image vortex. The (x, y, z) coordinates of a point on the

vortex loop are determined by

x =
(
xn(t) + a sin θn cos ξ, a cos θn cos ξ,−a sin ξ

)
, (D.1a)

x′ =
(
xn(t) + a sin θn cos ξ,−a cos θn cos ξ,−a sin ξ

)
, (D.1b)

which means that x and x′ are opposite in the y-direction, i.e. y = −y′.

The vorticity vectors ωn, ω
′
n can be expressed as

ωn = |ωn|
(
sin θn sin ξ,− cos θn sin ξ,− cos ξ

)
, (D.2a)

ω′
n = |ωn|

(
sin θn sin ξ,− cos θn sin ξ, cos ξ

)
, (D.2b)

which means that ωn and ω′
n are opposite in the z-direction, i.e. ωzn = −ω′

zn. Thus
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Figure D.1: End view of a vortex loop separating from the hemisphere at the intersection
points A and B. Also shown are the images of the vortex loop and the
hemisphere (dashed lines). ϕn ≡ 0.

Equation (6.7) becomes

(ωn ∧ v) d3x = ΓUc(0,− cos ξ, cos θn sin ξ)a dξ, (D.3a)

(ω′
n ∧ v′) d3x = ΓUc(0, cos ξ, cos θn sin ξ)a dξ, (D.3b)

for the original vortex and the image vortex, respectively. Herein we have taken

v = v′ = (Uc, 0, 0) on the vortex loop following the suggestion of Howe et al. [83].

To evaluate the force component Fin(t) described in Equation (6.8) we also need

to determine the derivatives ∂Xi/∂y, ∂Xi/∂z. For the component of the lift Ln in

the y-direction, we have

∂Xy

∂y
=
∂X ′

y

∂y′
= 1 +

R3

2|x|3
− 3R3y2

2|x|5
, (D.4)

and
∂Xy

∂z
= −

∂X ′
y

∂z′
= −3R3yz

2|x|5
. (D.5)
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Substituting Equations (D.3–D.5) into the expression of Fin(t) (6.6), we obtain

Ln(t) = ρ0UcΓa

∫ ξn(t)

−ξn(t)

(
− cos ξ

∂Xy

∂y
+ cos θn sin ξ

∂Xy

∂z

)
dξ, t > tn. (D.6a)

L ′
n(t) = ρ0UcΓa

∫ ξn(t)

−ξn(t)

(
cos ξ

∂X ′
y

∂y′
+ cos θn sin ξ

∂X ′
y

∂z′

)
dξ, t > tn. (D.6b)

On the other hand, for the component of the drag Dn in the x-direction, the

derivatives of Xx, X
′
x are given by

∂Xx

∂y
= −∂X

′
x

∂y′
= −3R3xy

2|x|5
, (D.7)

and
∂Xx

∂z
=
∂X ′

x

∂z′
= −3R3xz

2|x|5
. (D.8)

Similarly, we obtain

Dn(t) = ρ0UcΓa

∫ ξn(t)

−ξn(t)

(
− cos ξ

∂Xx

∂y
+ cos θn sin ξ

∂Xx

∂z

)
dξ, t > tn. (D.9a)

D ′
n(t) = ρ0UcΓa

∫ ξn(t)

−ξn(t)

(
cos ξ

∂X ′
x

∂y′
+ cos θn sin ξ

∂X ′
x

∂z′

)
dξ, t > tn. (D.9b)

Therefore it can be readily derived from Equations (D.4–D.9) that

Ln(t) = −L ′
n(t) and Dn(t) = D ′

n(t). (D.10)

This indicates that the acoustic field due to the unsteady lift Ln(t) will be cancelled,

whereas the acoustic field due to the unsteady drag Dn(t) will be doubled by the

image vortex.

D.2 Small-Time Approximations

In the initial stages of the vortex formation when Uc(t − tn)/R � 1, Equation (6.9)

indicates that [83]

ξn(t) ≈
√

2Uc(t− tn)

a

[ √
R2 − a2 cos2 θn

sin θn

(√
R2 − a2 cos2 θn − a sin θn

)]1/2

, (D.11)

and Equation (6.2) now reduces to

xn(t) ≈
√
R2 − a2 cos2 θn − a sin θn. (D.12)
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At this early time ξ ≈ 0 and Equation (6.13) can be rewritten as

Fn(t− tn) ≈ 2ξn(t)

(
1 +

R3A

2B5/2

)
, Uc(t− tn)/R� 1. (D.13)

In the above formula the auxiliary terms A , B are

A =
(
xn(t) + a sin θn

)2 − 2a2 cos2 θn = R2 − 3a2 cos2 θn, (D.14a)

B =
(
xn(t) + a sin θn

)2
+ a2 cos2 θn = R2. (D.14b)

Substituting Equations (D.11) and (D.14) into Equation (D.13), we obtain the

small-time approximation of Fn(t) as

Fn(t) ≈ 3

√
2Uc(t− tn)

a

[
1−

( a
R

)2

cos2 θn

]
H , (D.15)

where the auxiliary term

H =

[ √
R2 − a2 cos2 θn

sin θn

(√
R2 − a2 cos2 θn − a sin θn

)]1/2

. (D.16)

Similarly, Equation (6.15) can be rewritten as

Gn(t− tn) ≈ 2ξn(t)
3aR3 cos θn

2

C

B5/2
, Uc(t− tn)/R� 1. (D.17)

The auxiliary term C is given by

C = xn(t) + a sin θn =
√
R2 − a2 cos2 θn. (D.18)

Substituting the expressions of ξn(t) and C into Equation (D.17), we have

Gn(t) ≈ 3a cos θn

R

√
2Uc(t− tn)

a

[
1−

( a
R

)2

cos2 θn

]1/2

H (D.19)

which is the small-time approximation of Gn(t).

We now describe the derivations of F̂n(ω), Ĝn(ω), the Fourier transforms of the

small-time approximations of Fn(t), Gn(t) as defined in Equation (6.17), which will

lead to the high-frequency representations of the lift and drag spectra ΦL(ω), ΦD(ω).

As can be seen from Equations (D.15) and (D.19),

Fn(t), Gn(t) ∝ (t− tn)1/2, (D.20)
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and thus the standard integration [96]∫ ∞

0

xn eiωx dx =
n!

(iω)n+1
(D.21)

implies that the Fourier transform of (t− tn)1/2 can be evaluated,

1

2π

∫ ∞

0

(t− tn)1/2 eiω(t−tn) d(t− tn) =
1

2π

1
2
!

(iω)3/2
. (D.22)

By making use of the properties of the Gamma function,

Γ(n) = (n− 1)!, (D.23a)

Γ

(
3

2

)
=

1

2

√
π, (D.23b)

we can rewrite Equation (D.22) as

1

2π

∫ ∞

0

(t− tn)1/2 eiω(t−tn) d(t− tn) =
1

4
√
π(iω)3/2

. (D.24)

Therefore the high-frequency representations of the Fourier transforms

F̂n(ω), Ĝn(ω) are in the form:

F̂n(ω) ∼ 3

4(iω)3/2

√
2Uc

πa

[
1−

( a
R

)2

cos2 θn

]
H , (D.25)

Ĝn(ω) ∼ 3a cos θn

4R(iω)3/2

√
2Uc

πa

[
1−

( a
R

)2

cos2 θn

]1/2

H . (D.26)

Substituting the above formulae (D.25) and (D.26) into (6.27) and (6.30), we obtain

the high-frequency representations of the lift and drag spectra:

ΦL(ω) ∼ (ρ0UcΓa)
2 9Uc

4τaω3

〈[
1−

( a
R

)2

cos2 θn

]2

H 2

〉
, (D.27)

ΦD(ω) ∼ (ρ0UcΓa)
2 a

2

R2

9Uc

2τaω3

[
〈|E |2〉 − |〈E 〉|2

]
, (D.28)

where

E = −
√

2

2
(1 + i) cos2 θn

[
1−

( a
R

)2

cos2 θn

]1/2

H (D.29)

and the ensemble averages are to be taken over all possible values of the vortex

orientation θn.
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in röhren. Mathematische Abhandhmgen der Akademie der Wissenschaften zu Berlin

(1854), 17–98.

[67] HART, R. W., AND FARRELL, R. A. A variational principle for scattering from

rough surfaces. IEEE Transactions on Antennas and Propagation AP-25 (1977),

708–710.

[68] HAYES, J. A., HORNE, W. C., SODERMAN, P. T., AND BRENT, P. H. Airframe

noise characteristics of a 4.7% scale DC-10 model. AIAA Paper 97-1594, 1997.

[69] HEAD, M. R., AND BANDYOPADHYAY, P. New aspects of turbulent boundary

layer structure. Journal of Fluid Mechanics 107 (1981), 297–338.

[70] HERKES, W. H., AND STOKER, R. W. Wind tunnel measurements of the

airframe noise of a high-speed civil transport. AIAA Paper 98-0472, 1998.

[71] HERSH, A. S. Surface roughness generated flow noise. AIAA Paper 83-0786,

April 1983.

[72] HILEMAN, J. I., REYNOLDS, T. G., DE LA ROSA BLANCO, E., LAW, T. R., AND

THOMAS, S. P. Development of approach procedures for silent aircraft. AIAA

Paper 2007-0451, January 2007.

[73] HILEMAN, J. I., SPAKOVSZKY, Z. S., DRELA, M., AND SARGEANT, M. A.

Airframe design for ‘silent aircraft’. AIAA Paper 2007-0453, January 2007.

[74] HILEMAN, J. I., THUROW, B., AND SAMIMY, M. Exploring noise sources using

simultaneous acoustic measurements in real-time flow visualizations in jets.

AIAA Journal 40, 12 (2002), 2382–2392.

[75] HOWE, M. S. Contributions to the theory of scattering by randomly irregular

surfaces. Proceedings of the Royal Society of London A 337, 1611 (1974), 413–433.



212 BIBLIOGRAPHY

[76] HOWE, M. S. The role of surface shear stress fluctuations in the generation of

boundary layer noise. Journal of Sound and Vibration 65 (1979), 159–164.

[77] HOWE, M. S. On the generation of sound by turbulent boundary layer flow

over a rough wall. Proceedings of the Royal Society of London A 395, 1809 (1984),

247–263.

[78] HOWE, M. S. The influence of viscous surface stress on the production of

sound by a turbulent boundary layer over a rough wall. Journal of Sound and

Vibration 104, 1 (1986), 29–39.

[79] HOWE, M. S. The turbulent boundary-layer rough-wall pressure spectrum at

acoustic and subconvective wavenumbers. Proceedings of the Royal Society of

London A 415, 1848 (1988), 141–161.

[80] HOWE, M. S. On unsteady surface forces, and sound produced by the normal

chopping of a rectilinear vortex. Journal of Fluid Mechanics 206 (1989), 131–153.

[81] HOWE, M. S. Surface pressures and sound by turbulent flow over smooth and

rough walls. Journal of the Acoustical Society of America 90, 2 (1991), 1041–1047.

[82] HOWE, M. S. Acoustics of Fluid-Structure Interactions. Cambridge University

Press, Cambridge, England, 1998, ch. 3: Sound Generation in a Fluid with

Rigid Boundaries.

[83] HOWE, M. S., LAUCHLE, G. C., AND WANG, J. Aerodynamic lift and drag

fluctuations of a sphere. Journal of Fluid Mechanics 436 (2001), 41–57.

[84] HUNT, J. C. R., KAWAI, H., RAMSEY, S. R., PEDRIZETTI, G., AND PERKINS,

R. L. A review of velocity and pressure fluctuations in turbulent flows around

bluff bodies. Journal of Wind Engineeing and Industrial Aerodynamics 35 (1990),

49–85.

[85] ICAO. Convention on International Civil Aviation, fourth ed. International

Civil Aviation Organization (ICAO), Supplement incorporated March 2003,

ch. Annex 16 – Environmental Protection, Volume I: Aircraft Noise.
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