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The Silent Aircraft airframe has a flying wing design with a large wing planform and a

propulsion system embedded in the rear of the airframe with intake on the upper surface

of the wing. In the present paper, boundary element calculations are presented to evalu-

ate acoustic shielding at low frequencies. Besides the three-dimensional geometry of the

Silent Aircraft airframe, a few two-dimensional problems are considered that provide some

physical insight into the shielding calculations. Mean flow refraction effects due to forward

flight motion are accounted for by a simple time transformation that decouples the mean-

flow and acoustic-field calculations. It is shown that significant amount of shielding can be

obtained in the shadow region where there is no direct line of sight between the source

and observer. The boundary element solutions are restricted to low frequencies. We have

used a simple physically-based model to extend the solution to higher frequencies. Based

on this model, using a monopole acoustic source, we predict at least an 18 dBA reduction

in the overall sound pressure level of forward-propagating fan noise because of shielding.

I. Introduction

The “Silent Aircraft Initiative” is a project funded by the Cambridge-MIT Institute (CMI). Its aim is
to discover ways of reducing aircraft noise to the point where it would be virtually imperceptible to people
outside the airport perimeter in a typical urban environment. The present design of the Silent Aircraft is in
the form of a flying wing with a large wing planform and a propulsion system that is embedded in the rear
of the airframe with intake on the upper surface of the wing. Thus a large part of the forward-propagating
noise from the intake duct of the engines is shielded by the wing from observers on the ground.

Acoustic shielding estimates of noise from engines placed above a wing have been obtained by a few
investigators in the past, experimentally and numerically, for both tube-and-wing and flying-wing aircraft
configurations. For example, Jeffery and Holbeche1 studied the acoustic shielding from a full scale Hadley-
Page 115 delta-winged aircraft in flight by centrally mounting a powerful acoustic whistle above the wing.
They also performed experiments on a model scale aircraft mounted in a wind tunnel. They observed signif-
icant amount of shielding in the shadow region. They developed a simple model based on diffraction from
a sharp-edged semi-infinite plate to predict the noise underneath the wing. Clark and Gerhold2 experimen-
tally investigated the noise shielding by a 3-engine Blended-Wing-Body (BWB) model. A high-frequency
broadband point source was placed in the nacelles of the engines. They observed shielding in excess of 20 dB
for the Overall Sound Pressure Level (OASPL) in the forward sector of the shadow region. The amount of
shielding in the aft sector was relatively smaller, of the order of 10 dB. This is because both exhaust and inlet
radiated noise contributed to their result. Gerhold et al.3 used a simple wedge-shaped wing with a triangular
planform and a point source mounted in a nacelle above the wing, in order to compare experimental results
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with a numerical model. They used a boundary integral method to perform low-frequency calculations and
found good qualitative agreement with the experimental results. Ricouard et al.4 studied the shielding of
fan noise by the main wing of a scaled model tube-and-wing aircraft. In their experiments, the engine was
mounted over the tail wing. In this situation shielding is effective only in certain directions underneath the
wing along which there is no direct line of sight between the engine-intake and observers on the ground.
All these experimental investigations show a significant amount of shielding in the shadow zone underneath
the aircraft. Numerical solutions for realistic aircraft models so far have yielded only qualitative results and
provide little physical insight into the acoustic shielding solutions. Most theoretical models developed so
far use diffraction theories based on acoustic scattering from a semi-infinite plate, which, as is shown in a
subsequent section, is applicable only under certain conditions. Also most models and numerical simulations
have ignored mean flow refraction effects.

In the present paper, low-frequency acoustic shielding estimates are obtained from a point monopole
source placed above simple two-dimensional geometries and a three-dimensional Silent Aircraft model. The
analysis accounts for mean flow refraction effects due to forward flight motion and provides a framework
for incorporating realistic acoustic sources. The two-dimensional models provide some physical insight into
acoustic shielding calculations. For example, these models help explain the effect of various parameters such
as wing thickness, edge curvatures, source frequency, etc. on the amount of acoustic shielding. These models
also help in identifying the relevant length and frequency scales of the problem, which is useful in developing
simple analytical models.

Acoustic shielding effects can be calculated by solving an external acoustic scattering problem. Acoustic
waves generated by the engines are refracted by the mean flow past the moving aircraft. Considerable
simplifications to this problem can be made for low-Mach number flows (where |M |2 is negligible, M

being the Mach number) that can be assumed to be homentropic and potential. This assumption is valid
for flows with high Reynolds numbers in which boundary layer separation does not occur, such as the
flow-field around an airfoil (slender body moving parallel to its length) at low angles of attack. Taylor5

introduced a coordinate transformation by which the governing acoustic equations in a steady low-Mach
number homentropic potential flow are transformed into an ordinary wave equation. Taylor5 developed this
transformation to aid aircraft noise measurements from wind-tunnel and low-speed flight tests. Taylor’s
transformation distorts the time variable and thereby decouples the mean-flow and acoustic equations. This
is shown in section II for external source scattering problems. Thus the effect of a background flow-field on
sound propagation can be obtained by solving, independently, the potential (Laplace) equation for steady
fluid flow, and the Helmholtz equation for acoustic-wave propagation in the transformed time variable, and
then transforming the result into the physical time variable. Astley and Bain6 used Taylor’s transform in
a similar way to arrive at the governing acoustic equations suitable for the solution of Neumann boundary-
value problems by boundary element methods. Numerical solvers based on boundary element methods are
readily available for both Helmholtz and Laplace equations. Thus existing boundary element solvers can be
used to solve the problem of sound propagation through low-Mach number homentropic potential flows. A
boundary element implementation by means of an example of acoustic scattering from a point source by
a sphere immersed in a potential flow is described in section III. The attractive feature of this technique
is its simplicity. There are other advantages of using boundary element methods to solve this problem.
These will become apparent in section III. In section IV boundary element solutions for two-dimensional
models and comparisons with analytical models are presented. Calculations for a three-dimensional Silent
Aircraft airframe are presented in section V. At high acoustic frequencies, boundary element methods
become increasingly demanding (computationally). Thus boundary element calculations are restricted to
low frequencies. These low frequency calculations provide a lower bound for the acoustic shielding estimates.
A physically based model is used to extend the range of validity of the low-frequency solutions to higher
frequencies and thus to estimate the reduction in OASPL. Accurate high-frequency solutions can be obtained
by ray-acoustics methods, which is the subject of the on-going research work.
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II. Acoustic scattering

Consider a configuration in which fluid having a free-stream velocity of u∞ flows past a fixed closed
surface ∂Ω. At low Mach numbers (M 2 << 1, where M = |ū|/c is the Mach number, ū is the local fluid
velocity), the fluid-flow can be considered to be incompressible (see Batchelor,7 pages 167–168). Also since
variations in the speed of sound, c, depend on M 2, then correct to order M , c can be assumed to be a
constant. Now if the fluid motion is assumed to be inviscid and irrotational, then the steady flow ū in the
region Ω exterior to ∂Ω can be described by the Laplace equation

∇2φ̄ = 0 (1)

with the requirement that the normal velocity on ∂Ω be zero. That is,

n · ∇φ̄ = 0 on ∂Ω (2)

where n(x) is the unit inward normal at the point x on the surface ∂Ω. Here φ̄ is the scalar velocity potential
defined by ū(x) = ∇φ̄(x).

Equation (1) is the governing equation for the background (mean) flow. If this steady flow is disturbed
by a small perturbation, the ensuing dynamics of the perturbed variables can be described by the continuity
and momentum equations linearized about the equilibrium (mean/background) state given by the solution
of Eq. (1). These linearized equations can then be manipulated such that for an acoustic source S(x, t), the
unsteady potential acoustic field can be represented by a single equation in terms of the perturbation acoustic
potential φ. For a low Mach number mean flow, where terms of order M 2 are neglected, this equation is the
convected wave equation (see Howe8):

(

∂

∂t
+∇φ̄ · ∇

)2

φ− c2∇2φ = S(x, t). (3)

For a rigid boundary, φ satisfies the boundary condition

n · ∇φ = 0 on ∂Ω. (4)

Although in this analysis ∂Ω is assumed to be a rigid surface, it can be generalized easily for surfaces with
arbitrary impedances. In the far field, φ satisfies the Sommerfeld radiation condition9 that, in spherical
coordinates (r, θ, ψ), can be written as

lim
r→∞

[

r

(

∂φ

∂r
+

1

c

∂φ

∂t

)]

= 0 (5)

To illustrate the solution technique, consider the time-harmonic Green’s function φg(x, t) that satisfies

(

∂

∂t
+∇φ̄ · ∇

)2

φg − c2∇2φg = δ(x− xo) exp(−iωt). (6)

The space-time Green’s function, g, can be obtained by the following inverse Fourier transform

g(x− xo, t− to) =
1

2π

∫ ∞

−∞

φg(x− xo, t) exp(iωto)dω. (7)

The solution to Eq. (3) is then given by a convolution of the space-time Green’s function with the source
S(x, t).

Using Taylor’s transformations (see Taylor5):

X = x, T = t+ φ̄/c2, (8)

3 of 17

American Institute of Aeronautics and Astronautics



φg(x, t) = Φ(X, T ), and neglecting terms of order M 2, where M = |∇φ̄|/c is the Mach number, Eq. (6)
transforms into

(

∂2

∂T 2
− c2∇2

X

)

Φ = δ(X −Xo) exp[iωφ̄(X)/c2] exp[−iωT ]. (9)

where ∇2
X = ∂2/∂Xi∂Xi. The boundary condition (4) transforms into

n ·
(

∇XΦ+
1

c2
∇φ̄∂Φ

∂T

)

= 0 on ∂Ω. (10)

Upon substituting Eq. (2), the transformed boundary condition reduces to

n · ∇XΦ = 0 on ∂Ω. (11)

Since the large time-asymptotic response is expected to be time-harmonic at the source frequency, the
assumption Φ(X, T ) = Φ̂(X;ω) exp[−iωT ] simplifies Eq. (9) into

(

−ω2 − c2∇2
X

)

Φ̂ = δ(X −Xo) exp[iωφ̄(X)/c2]. (12)

The operator on the left-hand side is the familiar Helmholtz operator. Let the Green’s function for the
Helmholtz equation be given by

(

−ω2 − c2∇2
X

)

Φ̂h(X|Xs) = δ(X −Xs), (13)

with Φ̂h satisfying the boundary condition

n · ∇XΦ̂h = 0 on ∂Ω. (14)

Then the solution to Eq. (12) is given by

Φ̂(X;ω) = Φ̂h(X|Xo) exp[iωφ̄(Xo)/c
2]. (15)

Transforming back to the original variables, the time-harmonic Green’s function is given by

φg(x, t) = Φ̂h(x|xo) exp{iω[φ̄(xo)− φ̄(x)]/c2} exp(−iωt). (16)

The acoustic pressure is related to the perturbation potential via the Bernoulli equation

p(x, t) = −ρ̄
(

∂φ

∂t
+∇φ̄ · ∇φ

)

, (17)

where ρ̄ is the free-stream mean density.
With the acoustic potential given by Eq. (16), the acoustic pressure, correct to order M 2, can be written

as
p(x, t) = −ρ̄

(

−iωΦ̂h +∇φ̄ · ∇Φ̂h

)

exp{iω[φ̄(xo)− φ̄(x)]/c2} exp(−iωt). (18)

Note that Φ̂h is independent of the mean flow. Its effect on the acoustic pressure is displayed, explicitly,
through terms involving φ̄(x).

III. Boundary element formulation

The boundary element implementation for the acoustic scattering problem involves a two-step process.
From Eq. (16) it can be seen that the magnitude of the complex acoustic potential is given by the solution
of the Helmholtz equation and the phase is a function of the mean flow. Since Φ̂h is independent of the
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mean flow, the acoustic potential and consequently the acoustic pressure field can be evaluated by solving,
independently, the Helmholtz equation [(13) and (14)] and the Laplace equation [(1) and (2)]. Boundary
element methods for solving these equations are readily available. Thus the effect of low-Mach number
homentropic potential flows on acoustic scattering problems can be obtained by using existing boundary
element software. Since acoustic and mean flow calculations become decoupled, a single acoustic boundary-
element calculation can be used to investigate a variety of mean flows, such as, flows with different Mach
numbers past airfoils at different angles of attack (if the source position remains fixed relative to the airfoil).
Note that the mean-flow velocity potential need only be known at the source and observer positions. Hence,
boundary element methods are well-suited for solving the Laplace equation because they allow for point-wise
computation of the flow field. There are other advantages of using boundary element methods. Radiation
boundary conditions are implicitly satisfied and only the external surfaces of enclosed bodies in the domain
(not the entire domain) need to be discretized. For problems in which there are several source locations but
few observer locations of interest, an adjoint formulation can be used. This has a big computational advantage
because the sound-propagation problem from multiple sources can be solved by a single calculation. It can
be shown easily that the adjoint equation can be obtained from the direct equation (6) by just reversing the
direction of the mean flow. Hence the same procedure described above with φ̄ replaced with −φ̄ can be used
to obtain the adjoint solution.

u∞

θ

r

Source
x

y

Figure 1. An axial plane of a sphere immersed in a stream with a uniform velocity at infinity. An acoustic
monopole source is located on the x-axis

A. Acoustic scattering from a point source by a sphere immersed in a potential flow

To illustrate the application of the boundary element method, we consider the example of the scattering of
acoustic waves from a point source by a rigid sphere. Let the sphere of radius a be located at the origin
and a point source be located on the x-axis at a distance rs from the origin. The sphere is immersed in a
flow with a uniform value of u∞ in the +x direction at infinity. Thus both the mean flow and acoustic fields
are axisymmetric about the x-axis. These fields can be described adequately by a spherical polar coordinate
system (r, θ, ψ), as shown in Fig. 1.

As seen from Eq. (18) the pressure field for this problem requires a solution of both Helmholtz and
Laplace equations. The solution of Laplace equation for this problem is well known and is given by (for a
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Φ̂hrms
cos θ × 10−9
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Figure 2. Directivity pattern for Φ̂h (k a = 2, k rs = 4, k r = 200. ——–, 10 points per wavelength; – – –, 6 points
per wavelength;♦ , analytical solution)

more general geometry, the solution could be obtained numerically by a boundary element method):

φ̄(r, θ) = u∞ cos θ

(

a3

2r2
+ r

)

, (19)

-6 -4 -2 0 2 4 6

-4

-2

0

2

4

p
r
m

s
si
n
θ
×
1
0
−

6

prms cos θ × 10−6

Figure 3. Sound directivity pattern in the axial plane of the sphere ( ——–, u∞ = 0.2 c; – – –, u∞ = 0)

The solution to Helmholtz equation (Φ̂h) is obtained by using COMET/Acoustics.10 The surface of
the sphere is discretized by MSC/Patran.11 Figure 2 compares the directivity pattern for Φ̂h at a distance
of k r = 200, where k = ω/c is the source wavenumber, for different mesh resolutions, with the analytical
solution. It can be seen that about ten mesh points per acoustic wavelength are adequate to yield a converged
solution (cf. Agarwal and Morris12). The parameters chosen for this calculation are k a = 2, k rs = 4,
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u∞ = 0.2 c.
Once φ̄ and Φ̂h are known the acoustic pressure field is obtained from Eq. (18). Figure 3 shows the

sound directivity pattern in the axial plane at a distance of k r = 200. Also shown in the figure is the sound
directivity pattern when the fluid is stationary. It can be seen the flow-field enhances the pressure field in
upstream directions and reduces it in downstream directions. Taylor5 showed that the mean flow introduces
a single Doppler factor (1 −M∞ cos θ) in the far-field expression for pressure, which explains the observed
directivity patterns. A slightly modified derivation is presented here for completeness. In the far field, Eq.
(18) can be simplified by noting that correct to order 1/r,

φ̄ = u∞r cos θ , and (20)

∇2Φ̂h =
1

r2
∂

∂r

(

r2
∂Φ̂h
∂r

)

(21)

Using (21), correct to order 1/r, (13) can be written as

−ω2Φ̂h − c2
1

r2
d

dr

(

r2
dΦ̂h
dr

)

= 0 (22)

The outgoing wave solution to this equation is given by

Φ̂h = Λ
exp[ikr]

r
, (23)

where Λ is independent of r. Upon substituting Eqs. (20) and (23) in Eq. (18) and neglecting terms of order
1/r2 it can be shown that

|p(x, t)| = ωρ̄Φ̂h(1−M∞ cos θ), (24)

where M∞ is the free-stream Mach number. Equation (24) gives the effect of a potential mean flow on
the far-field acoustic pressure amplitude. Note that this simple expression of single Doppler factor in the
far-field expression for pressure is applicable only for a monopole source. For realistic sources, the effect of
the flow field on the sound directivity pattern would be more complex. The mean-flow convection effects for
an arbitrary source distribution Ŝ(x) can be found by forming a convolution of the Green’s function given
by Eq. (16) with Ŝ(x). That is,

φ(x;ω) =

∫

φg(x|xo;ω)Ŝ(xo)dxo

= e−iωφ̄(x)/c
2

∫

Φ̂h(x|xo) exp[iωφ̄(xo)/c
2]Ŝ(xo)dxo. (25)

Defining a modified source distribution Ŝ′(x) = Ŝ(x) exp[iωφ̄(x)/c2], Eq. (25) can be written as

φ(x;ω) = e−iωφ̄(x)/c
2

[
∫

Φ̂h(x|xo)Ŝ
′(xo)dxo

]

. (26)

The term in the parenthesis is the solution of the Helmholtz equation for the modified source distribution
Ŝ′(x), which can be obtained by the boundary element software. Finally, the pressure field is obtained by
the application of Bernoulli’s equation (18).

IV. Two-dimensional models

We expect that for an acoustic source placed above the wing, there would be a significant reduction of
noise in the shadow region underneath the wing. In order to understand the effect of various parameters
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Figure 4. Schematic for the set-up for acoustic scattering from a point source by flat plate (− − −−) and a
biconvex ellipse (——)

such as wing thickness, edge curvatures, source location and frequency, we have analyzed two sets of two-
dimensional wing models. One consisting of a flat plate and a biconvex ellipse with sharp edges, as shown in
Fig. 4, and the other consisting of an ellipse and a Zhukovsky airfoil, shown in Fig. 5. These models have
a chord length of a = 2 m. The ellipses have a maximum thickness of ε = 0.05 a. The radius of curvature
of the edge of the ellipse in Fig. 5, ρ = ε2, is chosen so as to match that of the leading edge of the airfoil.
A time-harmonic point acoustic source is placed at (0, 1.5ε). The source frequency is chosen such that the
Helmholtz number, ka = 50, where k is the wavenumber of the source. This Helmholtz number corresponds
to the fundamental frequency of the fan of the Silent Aircraft engine, which is the lowest tonal frequency
of interest. Since we expect more shielding at higher frequencies (as explained below), the present analysis
provides a lower bound on the shielding estimates.

2ρ = ε

−0.15
−0.1

−0.05
 0

 0.05
 0.1

 0.15

−1 −0.5  0  0.5  1

Figure 5. Schematic for the set-up for acoustic scattering from a point source by Zhukovsky airfoil (−−−−)
and an ellipse (——)

The two-dimensional acoustic shielding problem is solved by a boundary-element solver.12 Since the wave
equation is separable in elliptical coordinates, an analytical solution can be obtained for the ellipse and the
flat-plate, which is a zero-thickness ellipse. The analytical solution is given in Appendix A. It is consistent
with the boundary-element solution. Figure 6 shows the sound directivity pattern for the flat-plate and
biconvex-ellipse. Also shown is the directivity pattern for the incident field from the source. It can be seen
that there is a reduction of noise by about 13 dB noise reduction underneath the wing compared with the
incident field. The directivity pattern has some interesting features. There are wiggles (lobes) in the shadow
region underneath the wing, which are almost identical for the flat-plate and the biconvex-ellipse. There are
dips in the directivity pattern above, for the flat plate. The dips are due to the interference between the
direct and reflected waves between the source and the observer. This can be seen easily by placing an image
source below the flat plate that is of the same strength and is equidistant from the plate. The image source
accounts for the reflected waves from the upper surface of the wing. The sound field obtained by adding the
contribution from the source and image, shown in Fig. 7, has dips in the directivity pattern at the same
location as that given by the boundary-element solution. The dips disappear for the biconvex-ellipse case
because in that case the source is closer to the surface, hence the source and image pair being closer compared
to a wavelength, behave nearly as a single source. The wiggles underneath are due to the interference from
the diffracted field from the two edges. The high value for the Helmholtz number (ka = 50) indicates that
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Figure 6. Sound directivity pattern from the flat plate (——), biconvex cylinder (− · − · −·), and the incident
field (−−−−−−)

the acoustic wavelength is small compared with the chord-length. Therefore, for the length scales associated
with this problem, the frequency is high and hence ray-theory results are applicable. The two-dimensional
diffracted field from the edge of a wedge with exterior angle β is given by (see Appendix B and Fig. 14)

p̂2D =
Ŝ

k

π

β

i√
rrs

eik(r+rs)Dν(φ, φs) (27)

where (r, φ) and (rs, φs) are the locations of the observer and source, respectively, in polar coordinates with
the origin at the edge, Ŝ is the source strength and Dν(φ, φs) is the directivity function defined in Eq. (40).
The total diffracted field in the shadow region, given by adding the contributions from the two edges, is shown
in Fig. 7. The interference pattern from the diffracted field matches the directivity pattern underneath the
plate obtained from the boundary element solutions. Note that the only difference in the expression for
the diffracted field between the flat-plate and the biconvex ellipse is the external wedge angle β. For the
flat plate, β = 2π, which is nearly the same for the biconvex ellipse. This explains why the diffracted field
for the two cases is similar. It can be seen from Eq. (27) that the diffracted pressure field in the shadow
region is inversely proportions to frequency. Thus, if the frequency is doubled, SPL reduces approximately
by 6 dB. Note that doubling the frequency would double the number of lobed patterns, but, averaged over
a wavelength, the SPL would reduce by 6 dB. In three-dimensions, the diffracted pressure field is inversely
proportional to square root of frequency [see Eq. (39)]. Thus doubling the frequency would reduce the SPL
by approximately 3 dB.

Figure 8 shows the sound directivity pattern for the ellipse and the Zhukovsky airfoil. The directivity
pattern looks similar to the flat-plate and biconvex-ellipse case, even though the Zhukovsky airfoil has a
rounded leading-edge and the ellipse has rounded leading and trailing edges. This indicates that the sharp-
edge diffraction mechanism is applicable also to the rounded-edged models. This is because the radius
of curvature, ρ, is small compared with the wavelength (kρ = 0.25). However, as the frequency of the
source increases, kρ would become larger and the diffraction mechanism would change from a sharp-edge
to a creeping-ray mechanism. The pressure field due to sharp-edge diffraction falls linearly with increasing
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Figure 7. Comparison between the interference pattern obtained from the image-source model (−−−−) and
the diffraction field in the shadow zone (− · − · −·) with the boundary-element solution (——)

frequency, whereas it decays exponentially for a creeping wave. Thus for rounded edges with non-negligible
kρ, a significantly higher reduction of sound in the shadow region can be expected. This is the subject
of ongoing research work in which high frequency acoustic scattering is being calculated by ray tracing
techniques.

In order to determine the effect of source location on the amount of shielding in the shadow region, it is
appropriate to solve the adjoint problem. Fig. 9 shows the adjoint sound field above the Zhukovsky airfoil
for three source locations in the far field. In polar coordinates, the sources are located at kr = 500 and
θ = −90 deg, −60 deg and −120 deg. Because of the reciprocity between the adjoint and direct fields, the
adjoint sound field at an observer location above the airfoil from a source in the far field is the same as
the direct sound field from the source located above the airfoil and the observer in the far-field. That is
p(x|xs) = pa(xs|x), where p and pa are the direct and adjoint fields, respectively, x ≡ (r, θ) is the observer
location and xs is the source location. Fig. 9 also shows the adjoint incident field from the farfield source
located at θ = −90 deg. In general, the amount of shielding is a function of the relative locations of source
and observers with respect to the edge. It can be seen that unless the source is located very close to the
edges, significant amount of shielding is obtained in all directions. This can be explained based on the
edge-diffraction theory. If there is no direct line of sight between the source and observer then the observer
is in the shadow region and it receives a weak diffracted field from the edges.

V. Acoustic shielding by a Silent Aircraft

Acoustic shielding effects are estimated by means of a monochromatic point acoustic source placed above
the airframe of Silent Aircraft Experimental (SAX03). Figure 10 shows the orthographic projections of the
SAX03 airframe. The source is located at (2/3a, 0.05a, 0), where a is the center-body chord length.

Figure 11 shows the far-field sound directivity patterns in the x − y plane at three spanwise locations:
z = 0, z = b/2, and z = b, where b is the wingspan. Also shown is the incident field from the source
on the plane z = 0. The source frequency corresponds to a Helmholtz number, ka = 50. This frequency
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Figure 8. Sound directivity pattern from an ellipse (− · − · −·) and a Zhukovsky airfoil (——)

corresponds to the fundamental frequency of the fan.14 It can be seen that a reduction of at least 5 dB is
obtained in the shadow region underneath the aircraft. In dimensional terms, the frequency of the source
for this calculation is approximately 50 Hz. The human ear is fairly insensitive at such low frequencies. At
higher frequencies, where are ears are more sensitive, we expect a greater amount of noise reduction due
to shielding as explained in the preceding section. After finding the pressure field in the shadow region
at 50 Hz, we have made use of the inverse square-root dependence of pressure on frequency to extend the
solution to higher frequencies. Averaged over a wavelength this procedure is expected to yield a reasonable
approximation. The average acoustic intensities in the various frequency bands can be added after applying
the A-weighting filter function, which provides a reasonable representation of how the human ear perceives
loudness, to get the OASPL in dBA. Fig. 12 shows the relative effects of shielding for the OASPL in dBA for
forward propagating fan noise at various angles. It can be seen that there is at least an 18 dB reduction of
sound due to shielding. Thus the airframe provides a significant amount of shielding for the overall perceived
noise levels.

VI. Conclusions

Acoustic shielding of low-frequency engine noise by the Silent Aircraft airframe has been investigated by
solving an external acoustic scattering problem. By means of Taylor’s transformation, the governing equa-
tions for sound propagation through homentropic potential flows at low Mach numbers can be transformed
into an ordinary wave equation. For external acoustic scattering problems from time harmonic sources,
Taylor’s transformation decouples the mean flow and acoustic field calculations. The acoustic potential field
can then be obtained by solving, independently, the Helmholtz and Laplace equations. This technique is
amenable to solving both direct and adjoint sound propagation problems. Boundary element methods offer
a simple and efficient way of solving these equations at low frequencies. Analysis of simple two-dimensional
models has shown that there are two important length scales in the scattering problem: the chord length
and the radius of curvature of the edges. For the engine frequencies in the audible range, even the lowest
frequency corresponds to an acoustic wavelength that is much smaller than the chord length. This means
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Figure 9. SPLs for the adjoint acoustic field at a location (− · · − · · −) above the Zhukovsky airfoil for three
far-field source locations: ——–, θ = −90 deg; − · − · −·, θ = −60 deg; · · · · · ·, θ = −120 deg; −−−−, Incident field

that models based on ray theory can be used to to get better physical insight into the boundary element
solutions. It has been observed that if the radius of curvature of an edge is small compared to an acoustic
wavelength, the edge behaves as a sharp edge. If there is no direct line of sight between a source above the
wing and an observer underneath, then the observer is in a shadow region where there is a significant amount
of noise reduction. The sound pressure field in the shadow region is inversely proportional to frequency for
two-dimensional problems and to square root of frequency for three-dimensional problems. Therefore, acous-
tic shielding becomes more effective at higher frequencies. Low-frequency calculations of acoustic shielding
from a monopole source, pulsating at the fundamental fan frequency, placed above a Silent Aircraft airframe
show a significant amount of shielding (at least 5dB) throughout the shadow region. The present analysis
provides a framework for predicting noise from realistic sources. Boundary element methods become in-
creasingly demanding of computational resources at high frequencies. To complement the boundary element
method at high frequencies, a solution procedure based on ray acoustics is being developed.

Appendix

A. Acoustic scattering from an ellipse

The time-harmonic Green’s function satisfies the Helmholtz equation

(∇X
2 + k2)G(r|ro;ω) = −4πδ(r − ro) (28)

Consider an elliptic coordinate system (see Fig. 13) defined by

x = a/2 coshµ cos ν

y = a/2 sinhµ sin ν (29)

The incident field from the point source can be expanded in terms of a series in elliptical coordinates (see
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Figure 10. Orthographic projections of the Silent Aircraft airframe SAX03 (from Diedrich13)

page 1421, Morse and Feshback15)

GI(r|ro;ω) = iπH
(1)
0 (kR)

= 4πi

{

∞
∑

m=0

[

Sem(h, cos νo)

Me
m(h)

]

Sem(h, cos ν)

{

Jem(h, coshµo)Hem(h, coshµ); µ > µo
Jem(h, coshµ)Hem(h, coshµo); µo > µ

+

∞
∑

m=1

[

Som(h, cos νo)

Mo
m(h)

]

Som(h, cos ν)

{

Jom(h, coshµo)Hom(h, coshµ); µ > µo
Jom(h, coshµ)Hom(h, coshµo); µo > µ

}

,

(30)

where

Hem = Jem + iNem

Hom = Jom + iNom (31)

are solutions corresponding to outgoing waves, Sem, Som are even and odd Mathieu functions, respectively,
of order m; Me

m(h), Mo
m(h) are the normalization constants for these functions; Jem, Jom are the even and
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odd radial Mathieu functions of the first kind; and Nem, Nom are the even and odd radial Mathieu functions
of the second kind.

The scattered field can be represented as

GS(µ, ν|µo, νo) =
∞
∑

m=0

Aem(µo, νo)Sem(h, cos ν)Hem(h, coshµ)+

∞
∑

m=1

Aom(µo, νo)Som(h, cosh ν)Hom(h, coshµ)

(32)

∂GS

∂µ
(µ = 0) =

∞
∑

m=0

AemSem(h, cos ν)Jem(h, 1) +
∞
∑

m=1

AomSom(h, cos ν)Ho′m(h, 1) (33)

From Eq. (30),

∂GI

∂µ
(µ = 0) = 4πi

∞
∑

m=1

[

Som(h, cos νo)

Mo
m(h)

]

Som(h, cos ν)Jo′m(h, 1)Hom(h, coshµo) (34)

Since the normal velocity on the plate must be zero

∂GS

∂µ
(µ = 0) = −∂G

I

∂µ
(µ = 0) (35)

This gives

Aem = 0

Aom = −4πi
[

Som(h, cos νo)

Mo
m(h)

]

Jo′m(h, 1)

Ho′m(h, 1)
Hom(h, coshµo) (36)

Hence

GS = −4πi Jo
′
m(h, 1)

Ho′m(h, 1)

[

Som(h, cos νo)

Mo
m(h)

]

Som(h, cos ν)Hom(h, coshµo)Hom(h, coshµ) (37)
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Figure 12. Effect of shielding on forward-propagating fan noise at various observer angles in the farfield. ——,
fan noise without shielding; −−−−, fan noise with shielding.

Finally
G(r|ro;ω) = GI +GS (38)

B. Diffracted field from a two-dimensional edge

Consider a rigid wedge with a sharp edge. The edge of the wedge coincides with the z-axis. Let the observer
location in a cylindrical coordinate system be given by (r, φ, z), where the polar angle φ = 0 corresponds to
one of the faces of the wedge and φ = β corresponds to the other face, as shown in Fig. 14. A time-harmonic
monopole source of amplitude Ŝ and wavenumber k is located at (rs, φs, zs). The expression for the diffracted
field by the edge of the wedge in a three-dimensional space is given by (see Pierce,9 page 491)

p̂3D =
Ŝ

2β

(

2π

kLrrs

)1/2

ei(kLπ/4)Dν(φ, φs) (39)

where

Dν(φ, φs) =
sin νπ

cos νπ − cos ν(φ+ φs)
+

sin νπ

cos νπ − cos ν(φ− φs)
, (40)

L =
[

(r + rs)
2 + (z − zs)2

]1/2
is the shortest path around the edge from the source to the observer, and

ν = π/β is the wedge index.
The corresponding diffracted field in two-dimensions can be obtained by replacing the point source by a

line source of strength Ŝ per unit length. Then the two-dimensional diffracted field is given by

p̂2D =

∫ ∞

−∞

p̂3Ddzs (41)

Without loss of generality z is chosen to be zero. This integrand has an exponential term with an imaginary
argument. This can be integrated by the Method of Stationary Phase for large kL (or large kr). After
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Figure 13. Elliptic coordinates used to evaluate the scattered field from a flat-plate (µ = 0) and an ellipse

the application of the Method of Stationary Phase, the expression for the two-dimensional diffracted field is
given by

p̂2D =
Ŝ

k

π

β

i√
rrs

eik(r+rs)Dν(φ, φs) (42)
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