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The Silent Aircraft is in the form of a flying wing with a large wing planform and a propulsion
system that is embedded in the rear of the airframe with intakes on the upper surface of the wing.
Thus a large part of the forward-propagating noise from the intake ducts is expected to be shielded
from observers on the ground by the wing. Acoustic shielding effects can be calculated by solving an
external acoustic scattering problem for a moving aircraft. In this paper, acoustic shielding effects of
the Silent Aircraft airframe are quantified by a ray-tracing method. The dominant frequencies from
the noise spectrum of the engines are sufficiently high for ray theory to yield accurate results. It is
shown that for low-Mach number homentropic flows, a condition satisfied approximately by the Silent
Aircraft during take-off and approach, the acoustic rays propagate in straight lines. Thus, from Fermat’s
principle it is clear that classical Geometrical Optics and Geometrical Theory of Diffraction solutions
are applicable to this moving-body problem as well. The total amount of acoustic shielding at an
observer located in the shadow region is calculated by adding the contributions from all the diffracted
rays (edge-diffracted and creeping rays) and then subtracting the result from the incident field without
the airframe. Experiments on a model-scale geometry have been conducted in an anechoic chamber to
test the applicability of the ray-tracing technique. The three-dimensional ray-tracing solver is validated
by comparing the numerical solution with analytical high-frequency asymptotic solutions for canonical
shapes.

I. Introduction

The “Silent Aircraft Initiative” has a very aggressive goal of reducing aircraft noise to the point where it
would be below the background noise outside a typical city airport. Since the Silent Aircraft is in the form
of a flying wing with a large wing planform and a propulsion system that is embedded in the rear of the
airframe with intake on the upper surface of the wing, a large part of the forward-propagating noise from
the intake duct of the engines is expected to be shielded from observers on the ground by the wing. Acoustic
shielding by the wing is essential in achieving Silent Aircraft’s stringent noise target. In a previous paper,1

we quantified the amount of shielding from low frequency (of the order of the fan shaft frequency) simple
sources using boundary element methods. The objective of the present paper is to extend the analysis to
calculate the amount of shielding at higher frequencies that dominate the engine noise spectrum. This is
accomplished by using a ray-tracing method. The dominant frequencies from the noise spectrum of the
engines are sufficiently high for asymptotic methods to yield accurate results. Mathematically, if we expand
an acoustic variable, say pressure, as a power series in inverse powers of frequency ω, then ray theory
equations are satisfied by the leading term. The solution to these equations is also referred to as Physical
Optics (PO) solution. Geometrically, these represent direct and reflected rays. However, when there is
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an obstacle between an acoustic source and observer such that there is no direct line of sight between the
source and the observer, that is when the observer is the shadow region, the leading term in the power
series expansion vanishes. To account for the acoustic field in the shadow regions the PO solution needs
to be extended to include higher-order terms. The Geometrical Theory of Diffraction (GTD)2 is a powerful
technique that provides such an extension. GTD introduces new kind of rays called diffracted rays that
account for the acoustic field in the shadow region. In section II we derive the ray theory equations from
first principles and show that for low-Mach number homentropic flows, a condition satisfied approximately
by the Silent Aircraft during take-off and approach, the acoustic rays propagate in a straight line. Thus,
from Fermat’s principle it is clear that classical Geometrical Optics and Geometrical Theory of Diffraction
solutions are applicable to this moving-body problem as well. There are two types of diffracted rays, creeping
and sharp-edge diffracted rays. A brief description of the diffracted rays and their associated acoustic fields
is given in section III. There are several advantages of using a geometrical ray-theory approach. Since the
method is geometric, computationally, it is not dependent on the size of the geometry, only its complexity.
Furthermore there is no added penalty for higher frequencies. The rays need to be traced only once to
compute the acoustic field for multiple frequencies. The ray-tracing technique is not memory intensive and
is amenable to a parallel implementation. Perhaps the biggest advantage of this technique is that it provides
a visual interpretation for sound at any location. We have used an object-oriented ray-tracing simulator
called MIRA3 based on Fermat’s principle that works on complex geometries. The geometry is described by
NURBS (Non-Uniform Rational B-Spline) and Rational Bezier patches. NURBS is a standard for parametric
surface representation. MIRA was originally developed as a part of the Swedish code development project
GEMS for electromagnetic applications. A brief description of geometry input and the calculation of the
diffracted rays by MIRA is provided is section IV. The three-dimensional ray tracing solver is validated by
comparing the numerical solution with analytical high-frequency asymptotic solution for canonical shapes
in section V. The applicability of the ray-tracing technique is tested by comparing the simulated results with
experimental results for a scaled model planform. The details of the experimental set-up and comparisons
with numerical solutions are presented in section VI. Numerical calculations for a three-dimensional Silent
Aircraft airframe are presented in section VII.

II. Ray theory

Acoustic shielding effects can be calculated by solving an external acoustic scattering problem. Acoustic
waves generated by the engines are refracted by the mean flow past the moving aircraft. For low-Mach
number homentropic flows, such as high Reynolds number flows past slender bodies moving parallel to
their length, significant simplifications can be made to the problem of acoustic ray tracing through an
ambient flow field.

For a constant frequency disturbance, let the wavefronts of the ensuing acoustic waves be described by
τ(xp) = t, where xp is a locus of points on the wavefront at time t. Let n be the unit-normal vector at a point
x on the wavefront as shown in figure (1). Since ∇τ is parallel to n,

n = ∇τ/|∇τ| (1)

Let a ray be denoted by the parametric curve σ = σ(s), where s is the distance along the ray. A wavefront
moves in a direction normal to itself at the local speed of sound c while being convected by the local mean
flow u. Thus, for a ray to follow a wavefront, its velocity at any instant should be given by4

dσ

dt
= cn(x) + u(x) (2)

Thus the tangent to ray (dσ/ds) must be parallel to cn(x) + u(x). This can be written as

dσ

ds
= α [cn(x) + u(x)] , (3)

where α is a scalar. Since |dσ/ds| is unity,

dσ

ds
= (cn + u)

/∣

∣

∣cn + u

∣

∣

∣ (4)
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n

τ(xp) = constant

x σ

Figure 1. Schematic of a wavefront and a ray.

Using (1) and defining the local Mach number as M = u/c, (4) can be written as

dσ

ds
=

( ∇τ
|∇τ| +M

) [( ∇τ
|∇τ| +M

)

·
( ∇τ
|∇τ| +M

)]−1/2

(5)

After neglecting terms of order M2 in comparison with those of order unity, (5) reduces to

dσ

ds
=
∇τ
|∇τ| −

∇τ(∇τ ·M )

|∇τ|2 +M (6)

To proceed further, an expression for |∇τ| is required. This is given by the eikonal equation4

|∇τ| = 1

c
− ∇τ ·M (7)

Using (7), and neglecting terms of order M2, (6) can be written after some manipulations as

dσ

ds
= c∇τ +M (8)

For a potential flow, M = ∇φ/c. Hence,
dσ

ds
= ∇

(

cτ + φ/c
)

(9)

Using the transformation
T = τ + φ̄/c2, (10)

(9) reduces to
dσ

ds
= c∇T (11)

Equation (10) is the same as Taylor’s transformation.5 Interestingly, it is a natural choice for the transforma-
tion of coordinates to simplify the analysis. The transformation changes the arrival time of a wavefront at a

point x by φ(x)/c2. The direction of the rays is unaffected by this transformation. Using this transformation,
and neglecting terms of order M2, the eikonal equation reduces to

|∇T| = 1/c; (12)
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the form in the absence of a mean flow. It is clear from (11) that the transformed wavefront T(x) = constant
is perpendicular to the rays (σ). Thus,

d

ds

(

dσ

ds

)

=

( ∇T

|∇T| · ∇
)

dσ

ds
= c2(∇T · ∇)∇T (13)

Using the vector identity

(A · ∇)A =
1

2
∇|A|2 + (∇ ×A) ×A, (14)

(13) can be written as
d

ds

(

dσ

ds

)

= c∇
(

1

c

)

(15)

For a homogeneous medium,
d

ds

(

dσ

ds

)

= 0, (16)

which means that the rays are straight lines. This result can also be obtained directly from (9) and the eikonal
equation (7). Thus for low-Mach number homentropic potential flows, acoustic rays are straight lines and
hence the propagation medium can be treated to be homogeneous. This result has some interesting physical
implications. From Fermat’s principle it follows that classical Geometrical Optics and GTD solutions
are applicable to this moving-body problem as well. Jeffery and Holbeche6 made acoustic wind-tunnel
measurements by mounting an acoustic monopole source above a Delta wing. For low angles of attack,
they observed that the shadow-zone boundaries below the wing remained unchanged with variations in
flow speeds at low Mach numbers. This result is explained easily for linear acoustic rays. Also, the adjoint
solution to the sound propagation problem can be found easily; for the source and observer locations can
be exchanged to yield the same solution as for the direct problem if the time delay in (10) is switched to a

time lead, i.e., if φ is replaced with −φ.
The magnitude of the acoustic pressure in general depends on the characteristics of the source. Consider

a time-harmonic point source for the convected wave equation. The Taylor’s transformation only changes
the arrival time of the rays at an observer location. With respect to the transformed time (T), equations
(12) and (16) represent sound propagation in a homogeneous and isotropic medium. The acoustic potential
along a ray in such a medium is well-known and is given by7

φ ∝
exp[ikr]

r
(17)

where r = |x − xo| is the distance from the source along a ray. The amplitude of the acoustic potential
at any point is unaffected by the mean flow. However, since the arrival time is changed by the Taylor’s
transformation, the mean flow shifts the phase by a factor of ωφ̄(x)/c2. Thus the acoustic potential with the
background flow is given by

φ(x, t) ∝
exp(ikr)

r
exp{−iω[t + (φ(x) − φ(xo))/c2]} (18)

Note that the acoustic pressure is given by the Bernoulli equation and both its magnitude and phase are
affected by the mean flow.

III. Geometrical theory of diffraction

The geometrical theory of diffraction (GTD) is an extension of physical (geometrical) optics which is
based on the postulate that at high frequencies (large ka = 2πa/λ, where a is the object dimension and λ is
the wavelength) wavefields are governed by local conditions and they propagate along rays. A physical
optics solution fails to account for the diffracted field in a shadow region where there is no direct line of sight
between the source and receiver. GTD introduces new kind of rays called diffracted rays that contribute
to the field value in the shadow region. There are two kinds of diffracted rays - edge diffracted rays and
creeping rays. Edge diffracted rays are produced when a ray is incident on a sharp edge or corner. Creeping
rays are produced when a ray is incident on an object at a grazing incidence. The ray then lies in part on
the surface, creeps along the surface and leaves it at a grazing angle to the observer. Note that away from
the surface these rays behave as ordinary rays. A description of the fields for direct and diffracted rays is
given in the following subsections
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A. Direct field

In a homogeneous medium rays are straight lines. Consider a straight ray from P to Q with a time
dependence of exp(−iωt) and a wavenumber of k = ω/c. Let s be the distance between P and Q, then the
field at Q is given by

φ(Q) = φ(P)

[

ρ1ρ2

(ρ1 + s)(ρ2 + s)

]1/2

eiks (19)

where φ(P) is the field at P and ρ1, ρ2 are the principal radii of curvature of the wavefront through P. It can
be shown that for a point source this expression takes the form in Eq. (17).

B. Edge-diffracted field

z

x
y

P

Q

θo

Qe
θo

Figure 2. A ray incident on a sharp edge diffracts into a cone of rays. The axis of the cone is aligned with the edge.

y

x
φ

β

P (rs, φs, zs)

Q (r, φ, z)

Figure 3. Parameters for diffraction from a sharp edge.

The edge-diffracted ray is given by Fermat’s principle of edge diffraction: The edge-diffracted ray path
from a source at point P to a receiver at point Q has a stationary length of the paths from P to Q with a
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point on the edge. For a homogeneous medium this means that the incident and diffracted rays make equal
angles with the edge (θo) at the point of diffraction (Qe) and lie on opposite sides of the plane normal to the
edge. This leads to a cone of diffracted rays as shown in Fig. 2. The vertex of the cone coincides with the
diffraction point (Qe) and its axis is aligned with the edge. The edge-diffracted field is given by2

φ(P) = φi(Qe)D

√

ρ

s(s + ρ)
eiks (20)

Note that the edge itself is a caustic so that ρ actually is the second caustic distance that depends on the
radius of curvature of the edge at Qe. Hereφi(Qe) is the incident field at Qe and D is the diffraction coefficient
given by2

D =
exp(−iπ/4)ν sin(νπ)

√
2πk sinγ

[

1

cos νπ − cos ν(φ − φs)
+

1

cos νπ − cos ν(φ + φs)

]

(21)

where γ is the oblique angle between the incident ray and the edge, ν = π/β is the wedge index. The
other parameters are defined in Fig. 3. Note that the diffracted field is inversely proportional to square-
root of frequency. Thus for an edge-diffracted field doubling the frequency reduces the sound field by
approximately 3 dB.

C. Creeping field

Q2

Q1

P

t

s

so

Q

Figure 4. Diffraction of a single ray from P to Q around a curved surface. The ray consists of a straight line segment tangent to the
surface at Q1, a geodesic arc of length t on the surface from Q1 to Q2 and a straight line segment from the tangent point Q2 to Q.

Diffracted rays around a smooth object can be characterized by an extended form of Fermat’s principle:
In traveling from a source point P to an observer point Q, the surface diffracted ray path is such as to make
the total distance from P to Q an extremum. From this it follows that PQ1 and Q2Q are straight lines tangent
at Q1 and Q2 respectively, and Q1Q2 is a geodesic arc along the surface.

The creeping-ray field is given by8

φ(Q) = φi(Q1)T(Q1,Q2)

√

ρ

s(ρ + s)
eiks (22)

where T(Q1,Q2) is a transfer function that relates the diffracted field at Q2 to the incident field at Q1:

T(Q1,Q2) =
∑

m

Dm(Q1)



















exp



















ikt −
t

∫

0

αm(τ)dτ



















√

dσ(Q1)

dσ(Q2)



















Dm(Q2) (23)

where Dm(Q) is the diffraction coefficient at Q that depends on k and the local property of the geometry, t is

the geodesic length, αm is the decay coefficient, and the ratio [dσ(Q1)/dσ(Q2)]1/2 represents the attenuation
of the creeping ray field due to the divergence of two nearby creeping rays from the point of attachment
(Q1) to the point of exit (Q2). For a cylindrical field nearby rays would not diverge and hence this ratio
would be unity. The decay coefficients αm depend on the frequency and the local properties of the surface.
It can be seen from Eq. (23) that the creeping-ray field decays exponentially with increasing creeping length.
This is because a creeping ray continuously sheds rays as it travels along the surface.
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IV. The Ray-tracing program

In this section, we describe briefly how the geometry is used as input for the numerical simulator and
how the edge-diffracted and creeping rays are calculated. For details see ref.9 The three-dimensional objects
with which the rays interact are made up of a collection of large smooth parametric surfaces subdivided
into a combination of patches. The set of patches form a complete skin representing the solid with no
missing parts. Mathematically, the surfaces are modeled by Non-Uniform Rational B-Spline (NURBS) and
rational Bezier surfaces trimmed with bounding curves. Such a representation is a standard used by the
CAD industry to represent complex free-form geometries. Internally, the software handles the NURBS
surfaces by converting them into rational Bezier patches. Each patch is bounded (trimmed) by 2-D curves
in the parametric domain of definition of the surface. Each curve is represented by a set of edges that can
be segments or Bezier curves.

The edge-diffracted rays are calculated by finding the extremum of the total distance from the source
to an edge and from the edge to the receiver. This is done by using a conjugate gradient method. Since
a polynomial functional form is available for the edge, this extremum can be obtained to an arbitrary
precision.

Creeping ray calculations are a little more complicated. Since a creeping ray arrives and leaves a curved
surface at tangent points, the first step is to find the shadow line for a set of sampling points. The shadow
line is a locus of tangent points from the source to the curved surface. For each sample point on the shadow
line we trace the geodesic curve and cross over the ray between two surfaces if needed. The determination
of geodesics is a problem of differential geometry. Geodesics on a parametric surface can be found as a
solution of the geodesic equations, a set of nonlinear ordinary differential equations. The final step in the
creeping ray tracing is to exit the surface at the receiver shadow line. Because the method works on a
discrete sampling of the shadow curve, the solution is approximate. The error is controlled by the density
of the sampling points.

V. Diffraction by a circular cylinder

y

x

z

P

Q

(a)

θ
x

y

r

(b)

Figure 5. Two rays emanating from a monopole acoustic source at P (ka = 100) creep around a cylinder of radius a to a point Q.

The creeping-ray solver is validated by solving the three-dimensional problem of diffraction of acoustic
waves by a circular cylinder. Consider a circular cylinder of radius a with its generators parallel to the z-axis.
Let a point (monopole) acoustic source (ka = 100, k being the wavenumber) be located at P(2a, π/2, 0) in a

7 of 20

American Institute of Aeronautics and Astronautics



(r, θ, z) cylindrical polar coordinate system (Fig. 5). Consider observers located along the arc (2a,−π/3 ≤
θ ≤ −5π/6, a). Fig. 5(a) shows the location of one such observer. It can be seen that there are two rays
emanating from the source P that creep (diffract) around the cylinder to an observer Q. It can be shown
that the creeping rays trace a helical path around the cylinder (see Appendix A). Actually there are an
infinite family of rays from P to Q (with different pitch angles) that wrap around the cylinder multiple
times. Because the creeping ray field decays exponentially with increasing creeping length, these other rays
that wrap around the cylinder more than once will have negligible field strength by the time they reach the
observer, and are hence neglected. The total acoustic field at an observer location is then the sum of the
pressure fields from the two rays. Fig. 6 shows the root-mean-square pressure field for the various observer
locations. Also shown is the analytical solution (see Appendix A) at these locations. It can be seen that the
numerical solution is in good agreement with the analytical solution.

 0
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 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

-120 -110 -100 -90 -80 -70 -60

P
rm

s 
(P

a)

θ (deg)

Figure 6. Comparison between the root-mean-square pressures computed by a creeping-ray solver (⋄) and the analytical solution
(——)

The sharp-edge diffraction solver has been validated by comparing the diffraction field from a wedge
like the one shown in Fig. 3 with the analytical solution given by Eq. (20).

VI. Diffraction by a thin wing

A. Experimental set-up

In order to test the applicability of the ray-tracing technique we carried out some experiments in an
anechoic chamber at the Cambridge University Engineering Department. Figure 7 shows a photograph of
the experimental set up. As a sound source, a compression driver is extended by a pipe to simulate a point
source at its exit. The inner diameter of the pipe is about 16mm and its length is approximately 1m. It is
supported by three retort stands, two of which hold the driver, and the third supports the pipe. The pipe,
compression driver, and retort stands are covered by plastic foam. The directivity pattern of the source at
the exit of the pipe is evaluated by measuring the sound field at a fixed radial distance. The results show
that the compression driver and pipe system has a near-uniform directivity for frequencies up to 4 kHz in
both magnitude and phase. Hence, up to 4 kHz, this noise source can be regarded as a monopole.

The main shielding measurements have been conducted with a nearly two-dimensional planform model
(Fig. 8) and subsequently without it under the same configuration of the sound source and microphones.
The planform is a 1/50 scaled model of a Silent Aircraft design (designated SAX1010 ) made out of steel.
Its chord length, span and thickness are 0.92m, 1.17m, and 5mm respectively. The model is suspended by
three wires from a (2m × 2m × 2m) metal frame, wrapped with plastic foam for acoustic absorption. The
exit of the pipe (source) is located 60cm from the leading edge on the central chord line, and its center is
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Figure 7. A photograph of the experimental set-up in an anechoic chamber.

Figure 8. Scaled (1/50) model of Silent Aircraft (SAX10) design.
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positioned 6.5cm above the planform.

A microphone traverse system is used to survey the sound field for shielding experiments. A line of
microphones mounted on a frame along the Y-axis (spanwise direction) is moved along the X-axis on a belt
driven by a DC motor. The motor is controlled by a PC outside the anechoic chamber. For the experimental
results reported in this paper, sound fields were recorded every 2.5cm along the X-axis. The planform was
located 1.12m above the microphones.

Figure 9. A block-diagram representation of the experimental procedure.

Band-limited white noise is created by a noise generator, and is further filtered by a band-pass filter
between 500Hz to 20kHz. The electrical signal is then amplified and fed to the compression driver. The signal
is relayed to a data acquisition system and then serves as a reference for acoustic signals from microphones,
in order to take into account different source strengths between measurement sessions. Sound pressures are
captured by pre-polarized condenser microphones with preamplifiers, whose signal is further amplified and
filtered by an anti-aliasing filter. Finally, it is digitized with a 16-bit resolution at a sampling frequency of 65.5
kHz by a data logger with a multi-channel simultaneous sample-and-hold capability. In post-processing the
time-domain signals are transformed to the frequency domain by a FFT algorithm. During the frequency
analysis, a Hanning window is applied to each FFT block of data, which are then overlapped and averaged.
Transfer functions are calculated between the acoustic signals and the reference source signal. In order to
quantify the amount of shielding achieved by the planform, the insertion loss at each measurement location
is evaluated between the magnitudes of transfer functions with and without the planform. Figure 9 shows
a block diagram representation of the experimental procedure.

B. Comparison with numerical solution

For the numerical solution, we placed a monopole point source at (0.6m, 0, 0.065m). Figure 10 shows the
edge-diffracted rays at various observers located along the line y = 0.675m. Each observer receives rays
diffracted from multiple edges. The total field at each location is a sum of the fields from all the rays. This
leads to an interference pattern as shown in Fig. 11. The source frequency for this case is 2500 Hz.This
figure compares the numerical solution at y = ±0.675m with the experimental solution. The solution should
ideally be symmetric about y = 0. The experimental result is slightly asymmetric but is within the error
bars of the experiment. The numerical solution compares very well with the experimental solution. Similar
agreements can be found at other locations and frequencies. For example Fig. 12 shows the corresponding
comparisons at 4000 Hz and Fig. 13 shows a comparison along y = 0.375 at 2500 Hz. The numerical
solution exhibits sharp discontinuities in slope at certain x locations. This can be explained by the following
argument. The edges of this wing are piecewise linear and there is a discontinuity in slope where they meet
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Figure 10. Acoustic rays emanating from a monopole source above a thin planform diffract around the sharp edges to reach the
observers in the shadow region underneath the wing.
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Figure 11. Comparison of the numerical solution at y = 0.675 (——) with the experimental solution [y = 0.675 (−−−−−−), y=-0.675
(· · · )]. The source frequency is 2500 Hz.
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Figure 12. Same as Fig. 11 but frequency = 4000 Hz.
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Figure 13. Comparison of the numerical solution at y = 0.375 (——) with the experimental solution [y = 0.375 (−−−−−−), y=-0.375
(· · · )]. The source frequency is 2500 Hz.
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the neighboring edges (at corners). This leads to a discontinuous distribution of rays (the diffraction cone
axis for two neighboring edges are different). Thus we see a discontinuity in the acoustic field in the vicinity
of an observer that receives a diffracted ray from near the end points of an edge (corner). The diffraction
field from corners is a higher-order effect and is not accounted for in the present numerical simulation. Even
though the corner contribution would be negligible in the far-field compared with edge diffraction, its effect
is to smoothen out the slope discontinuities in the diffracted field as seen in the experimental results.

VII. Acoustic shielding by a silent aircraft

b

a

y

x

Figure 14. Orthographic projections of the Silent Aircraft airframe SAX20

Acoustic shielding effects are estimated by means of a monopole point source placed above the airframe
of Silent Aircraft design SAX20.11 Fig. 14 shows the orthographic projections of the SAX20 airframe. The
source is located at (0.8 a, 0, 0.125 a), where a is the center-body chord length.

Figure 15 shows the creeping and sharp-edge diffracted rays from the source to two observer locations.
Each observer receives several rays. For example the observer on the right receives two creeping rays and
three edge-diffracted rays, two from the trailing edges and one from the winglet. This leads to a complex
interference pattern. For example, Fig. 16 shows the root-mean-square far-field pressures prms at polar
angles between -150 and -30 degrees. The total prms is shown for two source frequencies: 100 Hz and 1000
Hz. Also shown in the figure is the field in the absence of shielding and the creeping and edge-diffracted
contributions at 1000 Hz. It is clear that we get a significant amount of shielding at both frequencies. As
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Figure 15. Creeping and edge-diffracted rays from a monopole acoustic source above the SAX20 airframe to two observers in the
shadow region below the airframe.

expected, the total diffracted field at 1000 Hz is lower than that for 100 Hz. Another interesting feature is
that the creeping field decays more rapidly than the edge-diffracted field. This is because the creeping-ray
field decays exponentially, as a cube-root of frequency (see Appendix A, Eq. (61)) and creeping (geodesic)
length.

Figure 17 shows the shielding contour levels for the Overall Sound Pressure Levels (OASPL) on the
ground, 100 ft below the aircraft. The contour levels represent the difference between the shielded and
unshielded acoustic fields for a source whose amplitude is independent of frequency over the range of
200 to 10,000 Hz. The accuracy of ray theory increases with frequency. But even at the lower end of this
frequency range, the size of the airframe is large compared with the acoustic wavelength. Hence ray tracing
is expected to provide reasonably accurate results. The negative levels in Fig. 17 indicate the amount of
shielding. We obtain at least 10 dB of shielding. The amount is actually higher at most locations except
for two diagonal patches near the winglet. We get less shielding at these locations because observers here
receive multiple diffracted rays from the winglet. This suggests that we should perhaps use absorbent
acoustic liners on the winglet. The actual amount of shielding for the Silent Aircraft engines would be more
effective than the levels indicated in this contour plot. This is because the dominant frequencies from the
noise spectrum of the engines are high, where shielding is more effective. The effect of lower frequencies,
where shielding is less effective, is further reduced by the application of A weighting to calculate perceived
noise levels.
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Figure 16. Root-mean-square farfield pressures as a function of polar angles. − · · − · · −, incident field; − · − · −, total field at 100 Hz;
——, total field at 1000 Hz; · · · · · · , creeping-ray field at 1000 Hz; − − − − −−, sharp edge-diffracted field at 1000 Hz.

VIII. Conclusions

The objective of this paper is to apply ray-tracing techniques to predict acoustic shielding of engine
noise by the airframe of a Silent Aircraft during take-off and approach. Classical ray tracing techniques are
also applicable to moving body problems, provided the flow past the body has a low Mach number and
is potential. Under these conditions the acoustic rays are straight lines. The favourable comparison of our
ray-tracing solution with the experimental results for a model scaled planform leads us to conclude that ray
tracing is an accurate tool for calculating the diffraction field in the shadow regions. Note that, in general,
this is true only if the size of the scattering object is much larger than the acoustic wavelength. Since all the
rays to a particular observers can be tracked graphically, ray-tracing tells us where the sound comes from,
thus providing valuable physical insight. For example, for the Silent Aircraft airframe we observed that a
few observer locations were less shielded than most others. Based on the ray traces, we observed that at
these locations the winglet was diffracting multiple rays from the source, so we could isolate the problem.
Ray tracing has some other advantages as detailed in the Introduction. It does have some disadvantages:
It is an approximate method restricted to high frequencies. For high-speed or non-potential flows the rays
would no longer be straight lines and they would have to be traced by solving an ordinary differential
equation, thus making the technique more complex and less efficient.

Appendix

A. High-frequency asymptotic solution for the diffracted field from a point source by a circular cylinder

Let us consider the diffraction of an acoustic wave from a point source by a cylinder of radius a. Let the
source be located at (ρo, φo, zo) in a (ρ, φ, z) cylindrical polar coordinate system. The axis of the cylinder is
aligned with the z-axis. The Green’s function for this problem satisfies the Helmholtz equation:

[

∂2

∂z2
+

1

ρ

∂

∂ρ

(

ρ
∂

∂ρ

)

+
1

ρ2

∂2

∂φ2
+ k2

]

g(r|ro; k) = −4π

ρ
δ(ρ − ρo)δ(φ − φo)δ(z − zo) (24)

Defining the Fourier transform as

G(ζ) =

∞
∫

−∞

g(z)e−iζ(z−zo)d(z − zo) (25)
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Figure 17. Shielding contour levels on the ground for SAX20 at a height of 100ft.

Eq. (24) transform into
[

1

ρ

∂

∂ρ

(

ρ
∂

∂ρ

)

+
1

ρ2

∂2

∂φ2
+ (k2 − ζ2)

]

G = −4π

ρ
δ(ρ − ρo)δ(φ − φo) (26)

Let k2 − ζ2 = β2. We now have a two-dimensional problem:

(∇2
+ β2)g(r|ro; β) = −4π

ρ
δ(ρ − ρo)δ(φ − φo) (27)

The z-dependence can be obtained by applying the inverse Fourier Transform to the solution of this problem.
The incident field from the point source can be expanded in terms a series in cylindrical coordinates (Morse
and Feshbach12)

gI(r|ro; β) = iπH(1)
0

(βR)

= πi

∞
∑

m=0

ǫm cos[m(φ − φo)]















Jm(βρ)H(1)
m (βρo); ρ < ρo

Jm(βρo)H(1)
m (βρ); ρ > ρo

(28)

∂gI

∂ρ

∣

∣

∣

∣

∣

∣

ρ=a

= iπβ
∞
∑

m=0

ǫm cos[m(φ − φo)]J′m(βa)H(1)
m (βρo) (29)

Let the scattered field be given by

gs(r|ro; β) =
∞
∑

m=0

Am cos[m(φ − φo)]H(1)
m (βρ) (30)
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The hard-wall boundary condition requires that ∂(gI + gs)/∂ρ be 0 at ρ = a. This gives,

Am = −iπǫm
J′m(βa)

H(1)
m

′
(βa)

H(1)
m (βρo)H(1)

m (βρ) (31)

Thus,

G(ρ, φ|ρo, φo; β) = iπ
∞
∑

m=−∞
eimφ















Jm(βρ<) −
J′m(βa)

H(1)
m

′
(βa)

H(1)
m (βρ<)















H(1)
m (βρ>) (32)

where ρ< and ρ> respectively represent the smaller and the larger of the values ρ and ρo.
Using Watson’s transformation13

G(ρ, φ|ρo, φo; β) = −π
2


eiν(φ−π)

sin νπ















Jν(βρ<)H(1)
ν

′
(βa) − J′ν(βa)H(1)

ν (βρ<)

H(1)
ν

′
(βa)















H(1)
ν (βρ>)dν (33)

This integral can be closed in both the upper- and lower-half planes for |φ| < π/2 (shadow region). Thus
the integral can be evaluated by the Method of Residues:

G(ρ, φ|ρo, φo; β) = π2i
∑

n

e±iνn(φ−π)

sin±νnπ

J′±νn
(βa)

∂H(1)
±νn

′
(βa)/∂ν

H(1)
±νn

(βρ<)H(1)
±νn

(βρ>) (34)

Note that one of the terms from Eq. (33) is missing because the residue is evaluated at the zeros of H(1)
ν

′
(βa).

Using the identities (Jones,13 page 673)

H(1)
−ν(z) = eνπiH(1)

ν (z)

Jν(z) =
1

2

[

H(1)
ν (z) +H(2)

ν (z)
]

J−ν(z) =
1

2

[

eνπiH(1)
ν (z) + e−νπiH(2)

ν (z)
]

∂H(1)
−ν(z)

∂ν
= −eνπi ∂H

(1)
ν (z)

∂ν
, (35)

it can be shown that

G(ρ, φ|ρo, φo; β) = π2i
∑

n

cos νn(φ − π)

sin νnπ















H(2)
νn

′
(βa)

∂H(1)
νn

′
(βa)/∂ν















H(1)
νn

(βρo)H(1)
νn

(βρ) (36)

Here

νn = βa +

(

βa

2

)1/3

qneiπ/3 (37)

H(2)
νn

′
(βa)

∂H(1)
νn

′
(βa)/∂ν

=
1

2π

(

βa

2

)1/3
exp(i5π/6)

qnAi2(−qn)
(38)

where qn is the nth root of Ai′(−q) = 0, Ai being the AiryAi function. For large νn,

1

sin νnπ
∼ −2i exp(iνnπ) (39)

Hence
cos νn(φ − π)

sin νnπ
∼ −i

[

eiνnφ + eiνn(2π−φ)
]

(40)

The three-dimensional Green’s function can be obtained by taking the inverse Fourier Transform:

g(ρ, φ, z|ρo, φo, zo) =
1

2π

∞
∫

−∞

G(ρ, φ|ρo, φo;
√

k2 − ζ2)eiζ(z−zo)dζ (41)
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Therefore,

g(r|ro) =
1

4
ei5π/6

∑

n

1

qnAi2(−qn)

∞
∫

−∞













√

k2 − ζ2

2
a













1/3

H(1)
νn

(
√

k2 − ζ2ρo)H(1)
νn

(
√

k2 − ζ2ρ)×

[

eiνnφ + eiνn(2π−φ)
]

eiζ(z−zo)dζ (42)

Note that |ζ| < |k| for propagating waves. Let ζ = k cosα. Then, since k >> 1,

g(r|ro) =
k sinα

4
ei5π/6

∑

n

1

qnAi2(−qn)

π
∫

0

(

ka

2
sinα

)1/3

H(1)
νn

(kρo sinα)H(1)
νn

(kρ sinα)×

[

eiνnφ + eiνn(2π−φ)
]

eik cosα(z−zo)dα (43)

For large ν and z (see Abramowitz and Stegun,14 page 368),

H(1)
ν (νz) ∼ 2e−iπ/3

(

4ξ

1 − z2

)1/4 1

ν1/3
Ai(ei2π/3ν2/3ξ) (44)

where
2

3
(−ξ)( 3/2) =

√
z2 − 1 − cos−1 1

z
(45)

Using the asymptotic expansion of Ai( ), this can be written as

H(1)
ν (νz) ∼ e−iπ/3π−1/2ν−1/3

(

4

1 − z2

)1/4
(

e2iπ/3ν2/3
)−1/4

exp
[

−2/3(e2iπ/3ν2/3ξ)3/2
]

(46)

=

√

2

π

ν−1/2e−iπ/2

(1 − z2)1/4
exp

{

−νeiπ 2

3

[

e−iπ(−ξ)
]3/2

}

(47)

Note that arg(−ξ) = 0, and −1 is written as exp(−iπ) inside the square brackets because the modulus of
the argument of the AiryAi function should be less than π for the above expansion to be valid. Using the
expression for ξ, we get:

H(1)
ν (νz) ∼

√

2

π

ν−1/2e−iπ/2

(1 − z2)1/4
exp

{

iν
[√

z2 − 1 − cos−1
(

1

z

)]}

(48)

substituting, ν = νn and νz = kr,

H(1)
νn

(βr) ∼
√

2

π

e−iπ/2

(ν2
n − β2r2)1/4

exp























iνn























√

β2r2 − ν2
n

νn
− cos−1

(

νn

βr

)













































(49)

Since νn = βa +O(βa)1/3,

H(1)
νn

(βr) ∼ −i

√

2

πβ

1

(a2 − r2)1/4
exp

[

iβ
√

r2 − a2 − iνn cos−1
(

a

r

)]

(50)

Thus

H(1)
νn

(k sinαρo)H(1)
νn

(k sinαρ) ∼ −2i

πksinα

1

(ρ2
o − a2)1/4

1

(ρ2 − a2)1/4
×

exp

{

ik sinα

(

√

ρ2 − a2 +

√

ρ2
o − a2

)

− iνn

[

cos−1

(

a

ρ

)

+ cos−1

(

a

ρo

)]}

(51)

Note that the branch cut is chosen is such a way that

i

(ρ2
o − a2)1/4

1

(ρ2 − a2)1/4
=

1

(a2 − ρ2
o)1/4

1

(a2 − ρ2)1/4
(52)
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With these approximations, the Green’s function can now be written as

g(r|ro) =
ei5π/6

2π

1

(ρ2
o − a2)1/4

1

(ρ2 − a2)1/4

∑

n

1

qnAi2(−qn)

π
∫

0

(

ka

2
sinα

)1/3
[

eiνnφ + eiνn(2π−φ)
]

×

exp

{

ik sinα

(

√

ρ2 − a2 +

√

ρ2
o − a2

)

− iνn

[

cos−1

(

a

ρ

)

+ cos−1

(

a

ρo

)]}

eik cosα(z−zo)dα (53)

This integral is in the form of
∫

ΦeiΨ and can be evaluated by the Method of Stationary Phase. Neglecting
terms of order smaller than ka, the stationary point ᾱ is given by the root of the equation dΨ/dα = 0:

tan ᾱ =
a

z − zo























(φ − φo) − cos−1

(

a

ρ

)

− cos−1

(

a

ρo

)

+

√

ρ2 − a2

a
+

√

ρ2
o − a2

a























(54)

Defining z using the helical angle θ as

z − zo = a























(φ − φo) − cos−1

(

a

ρ

)

− cos−1

(

a

ρo

)

+

√

ρ2 − a2

a
+

√

ρ2
o − a2

a























/ tanθ (55)

the stationary point is simply
ᾱ = θ (56)

d2Ψ

dα2

∣

∣

∣

∣

∣

∣

α=ᾱ

= −k(z − zo)/ cosθ (57)

Hence,

g(r|ro) =
eiπ/12

√
2π

1

(ρ2
o − a2)1/4

1

(ρ2 − a2)1/4

∑

n

1

qnAi2(−qn)

(

ka

2
sinθ

)1/3 √
cosθ

√

k(z − zo)

[

eiνnφ + eiνn(2π−φ)
]

×

exp

{

ik sinθ

(

√

ρ2 − a2 +

√

ρ2
o − a2

)

− iνn

[

cos−1

(

a

ρ

)

+ cos−1

(

a

ρo

)]}

eik cosθ(z−zo) (58)

Note that

a

[

(φ − φo) − cos−1

(

a

ρ

)

− cos−1

(

a

ρo

)]

= t sinθ (59)

Therefore,

g(r|ro) =
eiπ/12

2
√
π

1

(ρ2
o − a2)1/4

1

(ρ2 − a2)1/4
(a cosθ)1/2(sinθ)1/3

(

ka

2

)−1/6

(z − zo)−1/2
∑

n

1

qnAi2(−qn)
×

[

eik(so+t+s)e−αmt
+ eik(so+t̄+s)e−αm t̄

]

(60)

Here

αm =

(

k

2

)1/3

(acosec2θ)−2/3

√
3

2
qm (61)

g(r|ro) =
eiπ/12

√
2πk

1

(ρ2
o − a2)1/4

1

(ρ2 − a2)1/4
(cosθ)1/2

(

ka

2
sinθ

)1/3

(z − zo)−1/2
∑

n

1

qnAi2(−qn)
×

[

eik(so+t+s)e−αmt
+ eik(so+t̄+s)e−αm t̄

]

(62)

Finally, the Green’s function can be written as

g(r|ro) =
eiπ/12

√
2πk

1
√

s

1
√

so

1
√

so + s + t

(

k

2
acosec2θ

)1/3
∑

n

1

qnAi2(−qn)
×

[

eik(so+t+s)e−αmt
+ eik(so+t̄+s)e−αm t̄

]

(63)
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